Differential proteoglycan expression in two spinal cord regions after dorsal root injury

Dorsal root injury leads to reactive gliosis in the spinal cord dorsal root entry zone and dorsal column, two regions that undergo Wallerian degeneration, but have distinct growth-inhibitory properties. This disparity could in part be due to differences in the number of degenerating sensory fibers,...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular neuroscience Vol. 42; no. 4; pp. 315 - 327
Main Authors Waselle, Laurent, Quaglia, Xavier, Zurn, Anne D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dorsal root injury leads to reactive gliosis in the spinal cord dorsal root entry zone and dorsal column, two regions that undergo Wallerian degeneration, but have distinct growth-inhibitory properties. This disparity could in part be due to differences in the number of degenerating sensory fibers, differences in glial cell activation, and/or to differential expression of growth-inhibitory molecules such as chondroitin sulfate proteoglycans. Laser capture microdissection of these two spinal cord white matter regions, followed by quantitative analysis of mRNA expression by real-time PCR, revealed that glial marker transcripts were differentially expressed post-injury and that the chondroitin sulfate proteoglycans Brevican and Versican V1 and V2 were preferentially up-regulated in the dorsal root entry zone, but not the dorsal column. These results indicate that reactive gliosis differs between these two regions and that Brevican and Versican are potential key molecules participating in the highly inhibitory properties of the dorsal root entry zone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1044-7431
1095-9327
DOI:10.1016/j.mcn.2009.08.004