A novel SET/MOSFET hybrid static memory cell design

In this paper, a single electron transistor (SET)/metal-oxide-semiconductor field effect transistor (MOSFET)-based static memory cell is proposed. The negative differential conductance (NDC) characteristics of the SET block help us establish the static memory cell circuits more compactly than those...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nanotechnology Vol. 3; no. 3; pp. 377 - 382
Main Authors LEE, Bong-Hoon, JEONG, Yoon-Ha
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a single electron transistor (SET)/metal-oxide-semiconductor field effect transistor (MOSFET)-based static memory cell is proposed. The negative differential conductance (NDC) characteristics of the SET block help us establish the static memory cell circuits more compactly than those in conventional technologies. The proposed memory cell consists of one MOSFET and two back-to-back connected SET blocks exhibiting the NDC. The peak-to-valley current ratio of the SET block is above four with C/sub G/=5.4C/sub T/ (C/sub T/=0.1 aF) at T=77K. The read and write operations of the proposed memory cell were validated with SET/MOSFET hybrid simulations at T=77 K. Even though the fabrication process that integrates MOSFET devices and SET blocks with NDC is not yet available, these results suggest that the proposed SET/MOSFET hybrid static memory cell is suitable for a high-density memory system.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2004.828581