A 1.25-inch 60-frames/s 8.3-M-pixel digital-output CMOS image sensor

The ultrahigh-definition television (UDTV) camera system requires an image sensor having four times higher resolution and two times higher frame rate than the conventional HDTV systems. Also, an image sensor with a small optical format and low power consumption is required for practical UDTV camera...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 40; no. 11; pp. 2305 - 2314
Main Authors Takayanagi, I., Shirakawa, M., Mitani, K., Sugawara, M., Iversen, S., Moholt, J., Nakamura, J., Fossum, E.R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ultrahigh-definition television (UDTV) camera system requires an image sensor having four times higher resolution and two times higher frame rate than the conventional HDTV systems. Also, an image sensor with a small optical format and low power consumption is required for practical UDTV camera systems. To respond to these requirements, we have developed an 8.3-M-pixel digital-output CMOS active pixel sensor (APS) for the UDTV application. It features an optical format of 1.25inch, low power consumption of less than 600 mW at dark, while reproducing a low-noise, 60-frames/s progressive scan image. The image sensor is equipped with 1920 on-chip 10-bit analog-to-digital converters and outputs digital data stream through 16 parallel output ports. Design considerations to reproduce a low-noise, high-resolution image at high frame rate of 60 fps are described. Implementation and experimental results of the 8.3-M-pixel CMOS APS are presented.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2005.857375