Underactuated Robot Control: Comparing LQR, Subspace Stabilization, and Combined Error Metric Approaches

In this paper, three techniques for robust control of underactuated robots are experimentally compared on the classical ball and beam system. An adaptive tracking controller is first designed and implemented to identify the nominal friction characteristic. Then, designs for a linear quadratic regula...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 55; no. 10; pp. 3724 - 3730
Main Authors Marton, L., Hodel, A.S., Lantos, B., Hung, J.Y.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, three techniques for robust control of underactuated robots are experimentally compared on the classical ball and beam system. An adaptive tracking controller is first designed and implemented to identify the nominal friction characteristic. Then, designs for a linear quadratic regulator (LQR), subspace stabilization controller, and combined error metric controller are presented. Step response tests confirm that both nonlinear approaches exhibit better stability properties than the standard LQR design. In addition, the subspace stabilization approach permits a much more aggressive beam motion, resulting in shorter settling time with excellent control of overshoot.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2008.923285