Physicochemical Properties and Structure of the Bone Matrix in Simulated Tuberculous Osteitis
The physicochemical properties and structure of the bone matrix are studied in a case of simulated tuberculous osteitis without treatment and after a full course of specific antibacterial therapy. Using X-ray diffraction, infrared spectroscopy, thermal analysis, and scanning electron microscopy, we...
Saved in:
Published in | Technical physics Vol. 64; no. 1; pp. 121 - 126 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.01.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The physicochemical properties and structure of the bone matrix are studied in a case of simulated tuberculous osteitis without treatment and after a full course of specific antibacterial therapy. Using X-ray diffraction, infrared spectroscopy, thermal analysis, and scanning electron microscopy, we revealed that tuberculous osteitis causes fine disintegration of the bone matrix due to an increase in nonstoichiometric hydroxyapatite, formation of amorphous calcium phosphates, and a decrease of the organic phase, which is accompanied by embrittlement of the bone matrix. Excessive growth of carbonate-hydroxyapatite crystals of a mixed AB substitution type leads to excessive osteogenesis, accompanied by the uncontrolled growth of bone trabeculae. The presence of “liming” regions in the crystal lattice of hydroxyapatite increases the “binding” properties of the bone matrix in which mycobacteria are immobilized and removed in the composition of detritus. |
---|---|
ISSN: | 1063-7842 1090-6525 |
DOI: | 10.1134/S1063784219010183 |