Physicochemical Properties and Structure of the Bone Matrix in Simulated Tuberculous Osteitis

The physicochemical properties and structure of the bone matrix are studied in a case of simulated tuberculous osteitis without treatment and after a full course of specific antibacterial therapy. Using X-ray diffraction, infrared spectroscopy, thermal analysis, and scanning electron microscopy, we...

Full description

Saved in:
Bibliographic Details
Published inTechnical physics Vol. 64; no. 1; pp. 121 - 126
Main Authors Krut’ko, V. K., Kazbanov, V. V., Musskaya, O. N., Gaidash, A. A., Kulak, A. I., Chekan, N. M., Serdobintsev, M. S., Skrotskaya, K. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.01.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The physicochemical properties and structure of the bone matrix are studied in a case of simulated tuberculous osteitis without treatment and after a full course of specific antibacterial therapy. Using X-ray diffraction, infrared spectroscopy, thermal analysis, and scanning electron microscopy, we revealed that tuberculous osteitis causes fine disintegration of the bone matrix due to an increase in nonstoichiometric hydroxyapatite, formation of amorphous calcium phosphates, and a decrease of the organic phase, which is accompanied by embrittlement of the bone matrix. Excessive growth of carbonate-hydroxyapatite crystals of a mixed AB substitution type leads to excessive osteogenesis, accompanied by the uncontrolled growth of bone trabeculae. The presence of “liming” regions in the crystal lattice of hydroxyapatite increases the “binding” properties of the bone matrix in which mycobacteria are immobilized and removed in the composition of detritus.
ISSN:1063-7842
1090-6525
DOI:10.1134/S1063784219010183