Evaluation of Mechanical and Thermal Properties of Hydroxyapatite-levan Composite Bone Graft
Biodegradable materials have been received great attention as bone graft substitutes for bone regeneration and tissue engineering. However, their low mechanical property remains a major challenge for the use in load-bearing applications. Here, we developed mechanically reinforced composite scaffold...
Saved in:
Published in | Biotechnology and bioprocess engineering Vol. 26; no. 2; pp. 201 - 207 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society for Biotechnology and Bioengineering
01.04.2021
Springer Nature B.V 한국생물공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-8372 1976-3816 |
DOI | 10.1007/s12257-020-0094-6 |
Cover
Loading…
Summary: | Biodegradable materials have been received great attention as bone graft substitutes for bone regeneration and tissue engineering. However, their low mechanical property remains a major challenge for the use in load-bearing applications. Here, we developed mechanically reinforced composite scaffold containing adhesive levan as a binder for sintered hydroxyapatite (sHAp) and then examined the mechanical and thermal properties of the composite scaffold. We found that sHAp-levan composite scaffold exhibited remarkably enhanced mechanical strength, which is similar to that of polymethyl methacrylate (PMMA) bone cement. This composite scaffold can be utilized as a promising bone graft for bone regeneration and tissue engineering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1226-8372 1976-3816 |
DOI: | 10.1007/s12257-020-0094-6 |