Support structure constrained topology optimization for additive manufacturing
There is significant interest today in integrating additive manufacturing (AM) and topology optimization (TO). However, TO often leads to designs that are not AM friendly. For example, topologically optimized designs may require significant amount of support structures before they can be additively...
Saved in:
Published in | Computer aided design Vol. 81; pp. 1 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.12.2016
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is significant interest today in integrating additive manufacturing (AM) and topology optimization (TO). However, TO often leads to designs that are not AM friendly. For example, topologically optimized designs may require significant amount of support structures before they can be additively manufactured, resulting in increased fabrication and clean-up costs.
In this paper, we propose a TO methodology that will lead to designs requiring significantly reduced support structures. Towards this end, the concept of ‘support structure topological sensitivity’ is introduced. This is combined with performance sensitivity to result in a TO framework that maximizes performance, subject to support structure constraints. The robustness and efficiency of the proposed method is demonstrated through numerical experiments, and validated through fused deposition modeling, a popular AM process.
•Addresses additive manufacturing support structure constraint in topology optimization.•Introduces topological sensitivity for support structures.•Combines support structure sensitivity with performance sensitivity.•Proposes a robust and efficient algorithm for support structure constrained topology optimization. |
---|---|
AbstractList | There is significant interest today in integrating additive manufacturing (AM) and topology optimization (TO). However, TO often leads to designs that are not AM friendly. For example, topologically optimized designs may require significant amount of support structures before they can be additively manufactured, resulting in increased fabrication and clean-up costs. In this paper, we propose a TO methodology that will lead to designs requiring significantly reduced support structures. Towards this end, the concept of ‘support structure topological sensitivity’ is introduced. This is combined with performance sensitivity to result in a TO framework that maximizes performance, subject to support structure constraints. The robustness and efficiency of the proposed method is demonstrated through numerical experiments, and validated through fused deposition modeling, a popular AM process. There is significant interest today in integrating additive manufacturing (AM) and topology optimization (TO). However, TO often leads to designs that are not AM friendly. For example, topologically optimized designs may require significant amount of support structures before they can be additively manufactured, resulting in increased fabrication and clean-up costs. In this paper, we propose a TO methodology that will lead to designs requiring significantly reduced support structures. Towards this end, the concept of ‘support structure topological sensitivity’ is introduced. This is combined with performance sensitivity to result in a TO framework that maximizes performance, subject to support structure constraints. The robustness and efficiency of the proposed method is demonstrated through numerical experiments, and validated through fused deposition modeling, a popular AM process. •Addresses additive manufacturing support structure constraint in topology optimization.•Introduces topological sensitivity for support structures.•Combines support structure sensitivity with performance sensitivity.•Proposes a robust and efficient algorithm for support structure constrained topology optimization. |
Author | Mirzendehdel, Amir M. Suresh, Krishnan |
Author_xml | – sequence: 1 givenname: Amir M. surname: Mirzendehdel fullname: Mirzendehdel, Amir M. – sequence: 2 givenname: Krishnan surname: Suresh fullname: Suresh, Krishnan email: suresh@engr.wisc.edu |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Lnned7PfiSYpfUPSgnkM2mZQsbbJms4X6681aTx56ygTeZ4b3WZCZsQYJuaaQUKDlbZcILpM0jAnUCUB5Rua0rpo4LetiRuYAFOI8r4sLshiGDgBSmjVz8vo-9r11Phq8G4UfHUbCmvDh2qCMvO3t1m4Oke293ulv7rU1kbIu4lJqr_cY7bgZFZ9QbTaX5Fzx7YBXf--SfD4-fKye4_Xb08vqfh2LrM583GYK2qpVUuSA2CJUFKUSUtCSA_IG6rKUUtE0FVIVNK0qUUqgIoUKWq7ybElujnt7Z79GHDzr7OhMOMloE1K0LKo0pKpjSjg7DA4VE9r_Vpj6bRkFNsljHQvy2CSPQc2CvEDSf2Tv9I67w0nm7shgKL7X6NggNBqBUjsUnkmrT9A_yfOMMw |
CitedBy_id | crossref_primary_10_1016_j_cad_2024_103745 crossref_primary_10_3390_jmmp3030052 crossref_primary_10_1016_j_matdes_2022_110647 crossref_primary_10_1080_00207543_2023_2298477 crossref_primary_10_1115_1_4043978 crossref_primary_10_1108_RPJ_02_2024_0068 crossref_primary_10_1115_1_4042640 crossref_primary_10_1007_s11831_022_09786_9 crossref_primary_10_1002_amp2_10114 crossref_primary_10_3390_app10030943 crossref_primary_10_1002_nme_6279 crossref_primary_10_1007_s00158_017_1880_4 crossref_primary_10_1007_s00158_019_02420_6 crossref_primary_10_1007_s00158_019_02466_6 crossref_primary_10_1016_j_crme_2018_08_005 crossref_primary_10_3390_app10093265 crossref_primary_10_1007_s00158_019_02297_5 crossref_primary_10_1016_j_addma_2022_102956 crossref_primary_10_3390_mi13101672 crossref_primary_10_1115_1_4045106 crossref_primary_10_1002_nme_6017 crossref_primary_10_1016_j_addma_2022_102717 crossref_primary_10_1007_s00158_019_02334_3 crossref_primary_10_1016_j_cag_2021_07_011 crossref_primary_10_1016_j_procir_2017_02_012 crossref_primary_10_1016_j_cad_2017_05_003 crossref_primary_10_1016_j_cossms_2016_12_001 crossref_primary_10_1002_adfm_201805290 crossref_primary_10_1007_s40964_023_00419_6 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122097 crossref_primary_10_21042_AMNS_2017_2_00031 crossref_primary_10_1007_s00170_023_12482_y crossref_primary_10_1108_IR_10_2021_0247 crossref_primary_10_1080_17452759_2019_1647488 crossref_primary_10_32604_cmes_2022_020111 crossref_primary_10_1016_j_culher_2022_04_008 crossref_primary_10_1007_s00158_021_03077_w crossref_primary_10_1108_RPJ_11_2019_0296 crossref_primary_10_1007_s00158_020_02614_3 crossref_primary_10_1109_JSYST_2019_2939906 crossref_primary_10_1016_j_cad_2018_04_008 crossref_primary_10_1007_s00158_018_1994_3 crossref_primary_10_1016_j_apm_2018_09_014 crossref_primary_10_1016_j_engstruct_2023_116735 crossref_primary_10_1186_s10033_022_00779_0 crossref_primary_10_1007_s00245_022_09939_z crossref_primary_10_1016_j_jcp_2020_109365 crossref_primary_10_3390_app11052112 crossref_primary_10_1016_j_cad_2024_103771 crossref_primary_10_1016_j_cag_2017_05_022 crossref_primary_10_1007_s11431_020_1581_2 crossref_primary_10_1016_j_cag_2021_10_006 crossref_primary_10_1016_j_addma_2021_102407 crossref_primary_10_1016_j_jcp_2023_112083 crossref_primary_10_1016_j_cad_2019_06_005 crossref_primary_10_1016_j_cad_2019_06_004 crossref_primary_10_1007_s12008_024_01905_z crossref_primary_10_1016_j_matt_2020_08_023 crossref_primary_10_1016_j_ijmecsci_2021_106798 crossref_primary_10_1007_s00158_019_02194_x crossref_primary_10_3390_ma17092005 crossref_primary_10_1016_j_compstruc_2021_106637 crossref_primary_10_1016_j_jcp_2017_09_041 crossref_primary_10_1016_j_addma_2024_104157 crossref_primary_10_1016_j_matdes_2020_109286 crossref_primary_10_1016_j_cad_2018_12_006 crossref_primary_10_1007_s00158_018_2125_x crossref_primary_10_1016_j_cirp_2020_05_006 crossref_primary_10_1115_1_4066660 crossref_primary_10_3390_polym13162809 crossref_primary_10_1007_s00366_023_01786_y crossref_primary_10_3390_app132312916 crossref_primary_10_1115_1_4045301 crossref_primary_10_1016_j_addma_2018_04_016 crossref_primary_10_35940_ijrte_F7462_0712223 crossref_primary_10_1016_j_cad_2020_102989 crossref_primary_10_1016_j_cma_2020_113169 crossref_primary_10_1007_s00158_020_02815_w crossref_primary_10_1080_17452759_2021_1913783 crossref_primary_10_1007_s00158_022_03466_9 crossref_primary_10_1016_j_matpr_2022_09_277 crossref_primary_10_1016_j_prostr_2020_02_017 crossref_primary_10_1007_s00158_024_03858_z crossref_primary_10_1007_s12008_021_00767_z crossref_primary_10_1088_1361_665X_ab2eb6 crossref_primary_10_1093_jcde_qwac016 crossref_primary_10_1108_RPJ_12_2020_0317 crossref_primary_10_1007_s11465_019_0536_z crossref_primary_10_1016_j_addma_2017_12_001 crossref_primary_10_12677_SEA_2017_66027 crossref_primary_10_1016_j_cma_2024_117357 crossref_primary_10_1016_j_addma_2020_101246 crossref_primary_10_1007_s00158_022_03284_z crossref_primary_10_1007_s00170_020_05790_0 crossref_primary_10_3390_app112210980 crossref_primary_10_3390_su15086805 crossref_primary_10_1002_adem_202300976 crossref_primary_10_1016_j_istruc_2024_106379 crossref_primary_10_1080_0305215X_2020_1849170 crossref_primary_10_1016_j_matdes_2020_108978 crossref_primary_10_1080_17452759_2019_1644185 crossref_primary_10_1093_jcde_qwac004 crossref_primary_10_1016_j_matpr_2019_08_015 crossref_primary_10_1016_j_cad_2021_103117 crossref_primary_10_1080_17452759_2019_1637023 crossref_primary_10_1115_1_4039198 crossref_primary_10_1007_s00158_022_03465_w crossref_primary_10_1007_s00466_018_1537_1 crossref_primary_10_1007_s12206_019_1106_3 crossref_primary_10_1007_s00170_023_11084_y crossref_primary_10_1007_s00371_018_1493_y crossref_primary_10_1002_nme_6434 crossref_primary_10_1007_s00158_022_03454_z crossref_primary_10_1016_j_cma_2021_114227 crossref_primary_10_1002_nme_5461 crossref_primary_10_1016_j_tws_2020_107419 crossref_primary_10_1016_j_tws_2018_04_009 crossref_primary_10_1080_17452759_2018_1501275 crossref_primary_10_1007_s00170_020_06369_5 crossref_primary_10_1007_s00371_020_01860_2 crossref_primary_10_1016_j_addma_2018_06_007 crossref_primary_10_1115_1_4062663 crossref_primary_10_1016_j_matdes_2019_108164 crossref_primary_10_1016_j_cad_2020_102825 crossref_primary_10_1007_s00158_023_03565_1 crossref_primary_10_1007_s00158_020_02835_6 crossref_primary_10_1007_s00158_024_03808_9 crossref_primary_10_3390_jmmp2040064 crossref_primary_10_1080_09544828_2022_2098673 crossref_primary_10_1007_s00170_021_08014_1 crossref_primary_10_1002_pol_20230649 crossref_primary_10_4271_2019_24_0197 crossref_primary_10_1007_s00158_017_1743_z crossref_primary_10_3390_app132212532 crossref_primary_10_4028_p_sO6M4z crossref_primary_10_1108_RPJ_04_2021_0095 crossref_primary_10_1016_j_addma_2024_104294 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_1016_j_cad_2022_103449 crossref_primary_10_1177_0954406220947121 crossref_primary_10_1080_17452759_2023_2181192 crossref_primary_10_1115_1_4047352 crossref_primary_10_1007_s40964_020_00109_7 crossref_primary_10_1108_RPJ_01_2018_0009 crossref_primary_10_1108_RPJ_04_2019_0108 crossref_primary_10_1115_1_4043536 crossref_primary_10_1088_1757_899X_659_1_012020 crossref_primary_10_1007_s00170_017_1018_2 crossref_primary_10_1016_j_cad_2023_103542 crossref_primary_10_1007_s00170_023_11180_z crossref_primary_10_3390_app11010262 crossref_primary_10_1007_s00158_017_1837_7 crossref_primary_10_3390_ma15155323 crossref_primary_10_1115_1_4043530 crossref_primary_10_1016_j_engstruct_2023_115955 crossref_primary_10_1007_s00158_019_02392_7 crossref_primary_10_3390_designs2040051 crossref_primary_10_1016_j_camwa_2018_07_012 crossref_primary_10_1016_j_powtec_2017_12_058 crossref_primary_10_1007_s00158_018_2168_z crossref_primary_10_1007_s00170_019_03964_z crossref_primary_10_1177_0954406220917717 crossref_primary_10_1115_1_4050740 crossref_primary_10_1016_j_jmapro_2022_08_060 crossref_primary_10_1007_s00158_019_02317_4 crossref_primary_10_1007_s40964_021_00172_8 crossref_primary_10_1016_j_cad_2023_103531 crossref_primary_10_1002_nme_6611 crossref_primary_10_1021_acs_est_2c04927 crossref_primary_10_1007_s00170_024_14202_6 crossref_primary_10_1016_j_promfg_2018_10_012 crossref_primary_10_1109_TVCG_2019_2914044 crossref_primary_10_3389_fmech_2024_1353108 crossref_primary_10_1007_s00158_020_02551_1 crossref_primary_10_1007_s00158_017_1877_z crossref_primary_10_1007_s00158_019_02261_3 crossref_primary_10_1016_j_cma_2019_112812 crossref_primary_10_1007_s00158_022_03298_7 crossref_primary_10_1016_j_matpr_2021_07_429 crossref_primary_10_1007_s40684_021_00323_w crossref_primary_10_18698_2308_6033_2021_12_2136 crossref_primary_10_1088_2399_7532_ab54ea crossref_primary_10_1108_RPJ_10_2017_0213 crossref_primary_10_1088_1757_899X_1193_1_012053 crossref_primary_10_1016_j_ifacol_2019_10_066 crossref_primary_10_1016_j_addma_2018_06_011 crossref_primary_10_1016_j_crma_2017_04_008 crossref_primary_10_1016_j_cma_2018_01_037 crossref_primary_10_1051_cocv_2023012 crossref_primary_10_1016_j_eng_2024_01_028 crossref_primary_10_3390_jmmp3030068 crossref_primary_10_1007_s00170_024_14543_2 crossref_primary_10_1016_j_mfglet_2023_08_030 crossref_primary_10_1115_1_4047429 crossref_primary_10_4028_www_scientific_net_KEM_786_348 crossref_primary_10_21062_mft_2020_067 crossref_primary_10_1016_j_cad_2019_05_030 crossref_primary_10_1017_dsd_2020_112 crossref_primary_10_1016_j_cma_2019_03_054 crossref_primary_10_3390_app131810161 crossref_primary_10_1520_SSMS20200074 crossref_primary_10_1108_RPJ_01_2022_0038 crossref_primary_10_1016_j_matdes_2018_107550 crossref_primary_10_1007_s00158_020_02590_8 crossref_primary_10_1115_1_4035216 crossref_primary_10_1016_j_ijpe_2018_02_003 |
Cites_doi | 10.1137/S0363012997323230 10.1115/DETC2007-35353 10.1007/s001580050180 10.1016/j.addma.2015.06.002 10.1243/09544054JEM1842 10.1145/2508363.2508413 10.1016/0045-7825(91)90046-9 10.1016/j.compstruc.2016.02.009 10.1145/37402.37422 10.1016/S0168-874X(03)00118-5 10.1007/s00158-014-1188-6 10.1016/S0045-7825(99)00357-6 10.1016/j.cma.2007.05.006 10.1016/j.matcom.2007.07.001 10.1016/S0045-7825(99)00393-X 10.1007/s001580050176 10.1007/s00158-010-0534-6 10.1145/2659467.2675050 10.1007/s00158-003-0363-y 10.1016/S0045-7825(02)00559-5 10.1115/1.4024912 10.2514/6.2002-5614 10.6028/NIST.SP.1176 10.1007/s00158-007-0217-0 10.1007/s00158-012-0807-3 10.1080/00207540410001708470 10.1145/2816795.2818121 10.1111/cgf.12437 10.1007/s00158-007-0140-4 10.1007/s00158-013-0899-4 10.1115/1.4029335 10.1016/j.promfg.2015.09.041 10.1115/1.1388075 10.1115/1.4031088 10.2514/6.2014-2036 10.1016/j.cad.2015.03.001 10.1016/j.matdes.2014.06.015 10.1115/1.4030989 10.1115/1.4030994 10.1145/2601097.2601153 10.1007/s00158-005-0554-9 10.1007/s00158-011-0690-3 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Dec 2016 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2016 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2016.08.006 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
EndPage | 13 |
ExternalDocumentID | 10_1016_j_cad_2016_08_006 S0010448516300951 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c383t-b3f0b7bfdc40eebe071edfcdc16a0ea90866ddf122cdf51277c6d01c2070baf43 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Mon Jul 14 07:46:33 EDT 2025 Tue Jul 01 03:34:35 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Fri Feb 23 02:28:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topology optimization Level-set Support structure Additive manufacturing Topological sensitivity 3D printing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-b3f0b7bfdc40eebe071edfcdc16a0ea90866ddf122cdf51277c6d01c2070baf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1920716572 |
PQPubID | 2045267 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1920716572 crossref_citationtrail_10_1016_j_cad_2016_08_006 crossref_primary_10_1016_j_cad_2016_08_006 elsevier_sciencedirect_doi_10_1016_j_cad_2016_08_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Paul, Anand (br000105) 2014 Chen, Li, Qian (br000140) 2013; 13 Turevsky I, Suresh K. Generalization of topological sensitivity and its application to defeaturing. In: ASME IDETC Conference, Las Vegas, 2007. Céa, Garreau, Guillaume, Masmoudi (br000245) 2000; 188 Rozvany (br000010) 2009; 37 Harzheim, Graf (br000040) 2006; 31 Mirzendehdel, Suresh (br000240) 2015; 137 Barnett, Gosselin (br000130) 2015; 8 Feijoo RA, Novotny AA, Taroco E, Padra C. The topological-shape sensitivity method in two-dimensional linear elasticity topology design. In: Applications of Computational Mechanics in Structures and Fluids, CIMNE, 2005. Lorensen, Cline (br000300) 1987; 21 Wang, Wang, Yang, Liu, Tong, Tong, Deng, Chen, Liu (br000180) 2013; 32 Wang (br000220) 2004; 27 Suresh (br000230) 2010; 42 Liu L, Wang C, Shamir A, Whiting E. 3D printing oriented design: geometry and optimization. In SIGGRAPH Asia 2014 Courses. 2014, p. (Presentation). Nocedal, Wright (br000285) 1999 Lipson, Kurman (br000055) 2013 Wang, Wang, Guo (br000215) 2003; 192 Jiang Y, Kautz H, Selman B. Solving problems with hard and soft constraints using a stochastic algorithm for MAX-SAT. In: Proceedings of the 1st International Workshop on Artificial Intelligence and Operations Research, Timberline, Oregon, 1995. Suresh, Takalloozadeh (br000280) 2013; 48 Novotny, Feijoo, Taroco (br000265) 2007; 196 Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In: 22nd Annual international solid freeform fabrication symposium. 2011, p. 348–62. Zhang, Le, Panotopoulou, Whiting, Wang (br000115) 2015; 34 Rietz (br000195) 2001; 21 Umetani, Schmidt (br000120) 2013; 5 Thomas DS, Gilbert SW. Costs and cost effectiveness of additive manufacturing: A Literature review and discussion. NIST, 2014. Zhao J. Determination of optimal build orientation based on satisfactory degree theory for RPT. In: Proceedings — ninth international conference on computer aided design and computer graphics. 2005. p. 225–30. Art No. 1604640. Leary, Merli, Torti, Mazur, Brandt (br000070) 2014; 63 Suresh (br000235) 2013; 47 Zhou, Rozvany (br000205) 1991; 89 Seepersad CC, Govett T, Kim K, Lundin M, Pinero D. A designer’s guide for dimensioning and tolerancing SLS parts. In: Solid Freeform Fabrication Symposium, Austin, TX. 2012, p. 921–31. Du J. Topology optimization of continuum structures with respect to simple and multiple eigenfrequencies. In: 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, 2005. Nezhad, Barazandeh, Rahimi, Vatani (br000100) 2010; 224 Wang (br000035) 2004; 40 Gebhardt (br000145) 2011 Gibson I, Goenka G, Narasimhan R, Bhat N. Design rules for additive manufacture. In: International Solid Free Form Fabrication Symposium. 2010. Gaynor AT, Guest JK. Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: Presented at the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA. 2014, p. 16–20. Xia, Shi, Wang, Liu (br000175) 2011; 44 Sigmund (br000190) 2001; 21 Coverstone-Carroll (br000030) 2000; 186 Hu, Jin, Wang (br000185) 2015; 65 Huang, Xie (br000225) 2008; 35 Gibson, Rosen, Stucker (br000050) 2010 Das P, Chandran R, Samant R, Anand S. Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. 2015. Krishnakumar, Suresh (br000045) 2015; 137 Dumas, Hergel, Lefebvre (br000135) 2014; 33 Zhou M, Fleury R, Shyy Y-K, Thomas H, Brennan J. Progress in topology optimization with manufacturing constraints. 2002. Novotny (br000255) 2006; 137 Kesseler (br000020) 2006; 1 Dede, Joshi, Zhou (br000065) 2015 Bendsøe, Sigmund (br000015) 2003 Alonso (br000025) 2009; 79 Pandey, Thrimurthulu, Venkata Reddy (br000095) 2004; 42 Sokolowski, Zochowski (br000260) 1999; 37 Deng, Suresh (br000290) 2016; 170 Vanek, Galicia, Benes (br000125) 2014; 33 Maute, Tkachuk, Wu, Qi, Ding, Dunn (br000075) 2015 Williams CB, Seepersad CC. Design for additive manufacturing curriculum: A problem-and project-based approach. In: International solid freeform fabrication symposium. 2012, p. 81–92. Deng, Suresh (br000295) 2015; 51 Eschenauer, Olhoff (br000005) 2001; 54 Allaire, Jouve (br000210) 2005; 194 10.1016/j.cad.2016.08.006_br000060 Umetani (10.1016/j.cad.2016.08.006_br000120) 2013; 5 Nezhad (10.1016/j.cad.2016.08.006_br000100) 2010; 224 Lorensen (10.1016/j.cad.2016.08.006_br000300) 1987; 21 Rietz (10.1016/j.cad.2016.08.006_br000195) 2001; 21 Alonso (10.1016/j.cad.2016.08.006_br000025) 2009; 79 Wang (10.1016/j.cad.2016.08.006_br000035) 2004; 40 Lipson (10.1016/j.cad.2016.08.006_br000055) 2013 Suresh (10.1016/j.cad.2016.08.006_br000235) 2013; 47 Kesseler (10.1016/j.cad.2016.08.006_br000020) 2006; 1 Sokolowski (10.1016/j.cad.2016.08.006_br000260) 1999; 37 Barnett (10.1016/j.cad.2016.08.006_br000130) 2015; 8 Wang (10.1016/j.cad.2016.08.006_br000215) 2003; 192 10.1016/j.cad.2016.08.006_br000270 Rozvany (10.1016/j.cad.2016.08.006_br000010) 2009; 37 Zhou (10.1016/j.cad.2016.08.006_br000205) 1991; 89 Suresh (10.1016/j.cad.2016.08.006_br000230) 2010; 42 Deng (10.1016/j.cad.2016.08.006_br000290) 2016; 170 Zhang (10.1016/j.cad.2016.08.006_br000115) 2015; 34 10.1016/j.cad.2016.08.006_br000155 10.1016/j.cad.2016.08.006_br000110 10.1016/j.cad.2016.08.006_br000275 Suresh (10.1016/j.cad.2016.08.006_br000280) 2013; 48 Wang (10.1016/j.cad.2016.08.006_br000180) 2013; 32 Céa (10.1016/j.cad.2016.08.006_br000245) 2000; 188 10.1016/j.cad.2016.08.006_br000150 Deng (10.1016/j.cad.2016.08.006_br000295) 2015; 51 Novotny (10.1016/j.cad.2016.08.006_br000255) 2006; 137 Coverstone-Carroll (10.1016/j.cad.2016.08.006_br000030) 2000; 186 Xia (10.1016/j.cad.2016.08.006_br000175) 2011; 44 Leary (10.1016/j.cad.2016.08.006_br000070) 2014; 63 10.1016/j.cad.2016.08.006_br000160 Wang (10.1016/j.cad.2016.08.006_br000220) 2004; 27 10.1016/j.cad.2016.08.006_br000080 Chen (10.1016/j.cad.2016.08.006_br000140) 2013; 13 10.1016/j.cad.2016.08.006_br000200 10.1016/j.cad.2016.08.006_br000165 Novotny (10.1016/j.cad.2016.08.006_br000265) 2007; 196 Nocedal (10.1016/j.cad.2016.08.006_br000285) 1999 Mirzendehdel (10.1016/j.cad.2016.08.006_br000240) 2015; 137 10.1016/j.cad.2016.08.006_br000085 Harzheim (10.1016/j.cad.2016.08.006_br000040) 2006; 31 Dumas (10.1016/j.cad.2016.08.006_br000135) 2014; 33 Gibson (10.1016/j.cad.2016.08.006_br000050) 2010 Paul (10.1016/j.cad.2016.08.006_br000105) 2014 Hu (10.1016/j.cad.2016.08.006_br000185) 2015; 65 Vanek (10.1016/j.cad.2016.08.006_br000125) 2014; 33 10.1016/j.cad.2016.08.006_br000170 Huang (10.1016/j.cad.2016.08.006_br000225) 2008; 35 10.1016/j.cad.2016.08.006_br000090 Krishnakumar (10.1016/j.cad.2016.08.006_br000045) 2015; 137 Eschenauer (10.1016/j.cad.2016.08.006_br000005) 2001; 54 Maute (10.1016/j.cad.2016.08.006_br000075) 2015 10.1016/j.cad.2016.08.006_br000250 Sigmund (10.1016/j.cad.2016.08.006_br000190) 2001; 21 Allaire (10.1016/j.cad.2016.08.006_br000210) 2005; 194 Bendsøe (10.1016/j.cad.2016.08.006_br000015) 2003 Pandey (10.1016/j.cad.2016.08.006_br000095) 2004; 42 Dede (10.1016/j.cad.2016.08.006_br000065) 2015 Gebhardt (10.1016/j.cad.2016.08.006_br000145) 2011 |
References_xml | – year: 2003 ident: br000015 article-title: Topology optimization: theory, methods and application – volume: 40 start-page: 879 year: 2004 end-page: 893 ident: br000035 article-title: Automobile body reinforcement by finite element optimization publication-title: Finite Elem Anal Des – reference: Zhou M, Fleury R, Shyy Y-K, Thomas H, Brennan J. Progress in topology optimization with manufacturing constraints. 2002. – volume: 194 start-page: 3269 year: 2005 end-page: 3290 ident: br000210 article-title: A level-set method for vibration and multiple loads structural optimization publication-title: Struct Des Optim – volume: 31 start-page: 388 year: 2006 end-page: 399 ident: br000040 article-title: A review of optimization of cast parts using topology optimization: II-Topology optimization with manufacturing constraints publication-title: Struct Multidiscip Optim – reference: Thomas DS, Gilbert SW. Costs and cost effectiveness of additive manufacturing: A Literature review and discussion. NIST, 2014. – volume: 44 start-page: 751 year: 2011 end-page: 759 ident: br000175 article-title: Simultaneous optimization of cast part and parting direction using level set method publication-title: Struct Multidiscip Optim – volume: 137 start-page: 469 year: 2006 end-page: 478 ident: br000255 article-title: Topological-shape sensitivity method: Theory and applications publication-title: Solid Mech Appl – volume: 1 start-page: 221 year: 2006 end-page: 227 ident: br000020 article-title: Multidisciplinary design analysis and multi-objective optimisation applied to aircraft wing publication-title: WSEAS Trans Syst Control Cybernet – year: 2010 ident: br000050 article-title: Additive manufacturing technologies – volume: 33 start-page: 98:1 year: 2014 end-page: 98:10 ident: br000135 article-title: Bridging the gap: Automated steady scaffoldings for 3D printing publication-title: ACM Trans Graph – volume: 224 start-page: 1591 year: 2010 end-page: 1598 ident: br000100 article-title: Pareto-based optimization of part orientation in stereolithography publication-title: Proc Inst Mech Eng B – volume: 196 start-page: 4354 year: 2007 end-page: 4364 ident: br000265 article-title: Topological sensitivity analysis for three-dimensional linear elasticity problem publication-title: Comput Methods Appl Mech Engrg – volume: 34 start-page: 215:1 year: 2015 end-page: 215:12 ident: br000115 article-title: Perceptual models of preference in 3D printing direction publication-title: ACM Trans Graph – reference: Williams CB, Seepersad CC. Design for additive manufacturing curriculum: A problem-and project-based approach. In: International solid freeform fabrication symposium. 2012, p. 81–92. – year: 2013 ident: br000055 article-title: Fabricated: the new world of 3D printing – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: br000215 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg – reference: Das P, Chandran R, Samant R, Anand S. Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. 2015. – volume: 137 year: 2015 ident: br000240 article-title: A pareto-optimal approach to multimaterial topology optimization publication-title: J Mech Des – reference: Seepersad CC, Govett T, Kim K, Lundin M, Pinero D. A designer’s guide for dimensioning and tolerancing SLS parts. In: Solid Freeform Fabrication Symposium, Austin, TX. 2012, p. 921–31. – year: 2014 ident: br000105 article-title: Optimization of layered manufacturing process for reducing form errors with minimal support structures publication-title: J Manuf Syst – volume: 54 start-page: 331 year: 2001 end-page: 389 ident: br000005 article-title: Topology optimization of continuum structures: A review publication-title: Appl Mech Rev – volume: 51 start-page: 987 year: 2015 end-page: 1001 ident: br000295 article-title: Multi-constrained topology optimization via the topological sensitivity publication-title: Struct Multidiscip Optim – volume: 8 start-page: 95 year: 2015 end-page: 104 ident: br000130 article-title: Weak support material techniques for alternative additive manufacturing materials publication-title: Additive Manuf – volume: 32 start-page: 1 year: 2013 end-page: 10 ident: br000180 article-title: Cost-effective printing of 3D objects with skin-frame structures publication-title: ACM Trans Graph – reference: Jiang Y, Kautz H, Selman B. Solving problems with hard and soft constraints using a stochastic algorithm for MAX-SAT. In: Proceedings of the 1st International Workshop on Artificial Intelligence and Operations Research, Timberline, Oregon, 1995. – reference: Du J. Topology optimization of continuum structures with respect to simple and multiple eigenfrequencies. In: 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, 2005. – volume: 21 year: 1987 ident: br000300 article-title: Marching Cubes: a high resolution 3D surface reconstruction algorithm publication-title: ACM siggraph Comput Graphics – volume: 42 start-page: 665 year: 2010 end-page: 679 ident: br000230 article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization publication-title: Struct Multidiscip Optim – reference: Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In: 22nd Annual international solid freeform fabrication symposium. 2011, p. 348–62. – volume: 5 start-page: 1 year: 2013 end-page: 4 ident: br000120 article-title: Cross-sectional structural analysis for 3D printing optimization publication-title: SIGGRAPH Asia – volume: 170 start-page: 1 year: 2016 end-page: 12 ident: br000290 article-title: Multi-constrained 3D topology optimization via augmented topological level-set publication-title: Comput & Structures – year: 2015 ident: br000075 article-title: Level set topology optimization of printed active composites publication-title: J Mech Des – reference: Liu L, Wang C, Shamir A, Whiting E. 3D printing oriented design: geometry and optimization. In SIGGRAPH Asia 2014 Courses. 2014, p. (Presentation). – volume: 37 start-page: 1251 year: 1999 end-page: 1272 ident: br000260 article-title: On topological derivative in shape optimization publication-title: SIAM J Control Optim – volume: 33 start-page: 117 year: 2014 end-page: 125 ident: br000125 article-title: Clever support: Efficient support structure generation for digital fabrication publication-title: Comput Graph Forum – volume: 21 start-page: 159 year: 2001 end-page: 163 ident: br000195 article-title: Sufficiency of a finite exponent in SIMP (power law) methods publication-title: Struct Multidiscip Optim – reference: Feijoo RA, Novotny AA, Taroco E, Padra C. The topological-shape sensitivity method in two-dimensional linear elasticity topology design. In: Applications of Computational Mechanics in Structures and Fluids, CIMNE, 2005. – volume: 89 start-page: 309 year: 1991 end-page: 336 ident: br000205 article-title: The COC algorithm, part II: Topological, geometry and generalized shape optimization publication-title: Comput Methods Appl Mech Engrg – volume: 42 start-page: 4069 year: 2004 end-page: 4089 ident: br000095 article-title: Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm publication-title: Int J Prod Res – volume: 79 start-page: 1948 year: 2009 end-page: 1958 ident: br000025 article-title: Aircraft design optimization publication-title: Math Comput Simul – volume: 48 start-page: 295 year: 2013 end-page: 309 ident: br000280 article-title: Stress-constrained topology optimization: A topological level-set approach publication-title: Struct Multidiscip Optim – volume: 21 start-page: 120 year: 2001 end-page: 127 ident: br000190 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct Multidiscip Optim – volume: 27 start-page: 1 year: 2004 end-page: 19 ident: br000220 article-title: Structural shape and topology optimization in a level-set-based framework of region representation publication-title: Struct Multidiscip Optim – volume: 37 start-page: 217 year: 2009 end-page: 237 ident: br000010 article-title: A critical review of established methods of structural topology optimization publication-title: Struct Multidiscip Optim – reference: Gibson I, Goenka G, Narasimhan R, Bhat N. Design rules for additive manufacture. In: International Solid Free Form Fabrication Symposium. 2010. – volume: 35 start-page: 89 year: 2008 end-page: 92 ident: br000225 article-title: A new look at ESO and BESO optimization methods publication-title: Struct Multidiscip Optim – volume: 65 start-page: 1 year: 2015 end-page: 10 ident: br000185 article-title: Support slimming for single material based additive manufacturing publication-title: Comput-Aided Des – reference: Zhao J. Determination of optimal build orientation based on satisfactory degree theory for RPT. In: Proceedings — ninth international conference on computer aided design and computer graphics. 2005. p. 225–30. Art No. 1604640. – reference: Gaynor AT, Guest JK. Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: Presented at the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA. 2014, p. 16–20. – year: 2015 ident: br000065 article-title: Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink publication-title: J Mech Des – volume: 47 start-page: 49 year: 2013 end-page: 61 ident: br000235 article-title: Efficient generation of large-scale pareto-optimal topologies publication-title: Struct Multidiscip Optim – volume: 137 year: 2015 ident: br000045 article-title: Hinge-Free compliant mechanism design via the Topological Level-Set publication-title: J Mech Des – volume: 63 start-page: 678 year: 2014 end-page: 690 ident: br000070 article-title: Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures publication-title: Mater Des – volume: 188 start-page: 713 year: 2000 end-page: 726 ident: br000245 article-title: The shape and topological optimization connection publication-title: Comput Methods Appl Mech Engrg – volume: 186 start-page: 387 year: 2000 end-page: 402 ident: br000030 article-title: Optimal multi-objective low-thrust spacecraft trajectories publication-title: Comput Methods Appl Mech Engrg – start-page: 103 year: 2011 end-page: 128 ident: br000145 article-title: Additive manufacturing design and strategies publication-title: Understanding additive manufacturing, A. Gebhardt – reference: Turevsky I, Suresh K. Generalization of topological sensitivity and its application to defeaturing. In: ASME IDETC Conference, Las Vegas, 2007. – year: 1999 ident: br000285 article-title: Numerical optimization – volume: 13 year: 2013 ident: br000140 article-title: Direct geometry processing for telefabrication Yong Chen, Kang Li and Xiaoping Qian publication-title: J Comput Inf Sci Eng – year: 1999 ident: 10.1016/j.cad.2016.08.006_br000285 – volume: 37 start-page: 1251 issue: 4 year: 1999 ident: 10.1016/j.cad.2016.08.006_br000260 article-title: On topological derivative in shape optimization publication-title: SIAM J Control Optim doi: 10.1137/S0363012997323230 – ident: 10.1016/j.cad.2016.08.006_br000270 doi: 10.1115/DETC2007-35353 – volume: 21 start-page: 159 issue: 2 year: 2001 ident: 10.1016/j.cad.2016.08.006_br000195 article-title: Sufficiency of a finite exponent in SIMP (power law) methods publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050180 – ident: 10.1016/j.cad.2016.08.006_br000160 – volume: 8 start-page: 95 year: 2015 ident: 10.1016/j.cad.2016.08.006_br000130 article-title: Weak support material techniques for alternative additive manufacturing materials publication-title: Additive Manuf doi: 10.1016/j.addma.2015.06.002 – volume: 224 start-page: 1591 issue: 10 year: 2010 ident: 10.1016/j.cad.2016.08.006_br000100 article-title: Pareto-based optimization of part orientation in stereolithography publication-title: Proc Inst Mech Eng B doi: 10.1243/09544054JEM1842 – volume: 32 start-page: 1 issue: 6 year: 2013 ident: 10.1016/j.cad.2016.08.006_br000180 article-title: Cost-effective printing of 3D objects with skin-frame structures publication-title: ACM Trans Graph doi: 10.1145/2508363.2508413 – ident: 10.1016/j.cad.2016.08.006_br000060 – volume: 194 start-page: 3269 issue: 30–33 year: 2005 ident: 10.1016/j.cad.2016.08.006_br000210 article-title: A level-set method for vibration and multiple loads structural optimization publication-title: Struct Des Optim – volume: 89 start-page: 309 issue: 1–3 year: 1991 ident: 10.1016/j.cad.2016.08.006_br000205 article-title: The COC algorithm, part II: Topological, geometry and generalized shape optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/0045-7825(91)90046-9 – ident: 10.1016/j.cad.2016.08.006_br000150 – volume: 170 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.cad.2016.08.006_br000290 article-title: Multi-constrained 3D topology optimization via augmented topological level-set publication-title: Comput & Structures doi: 10.1016/j.compstruc.2016.02.009 – volume: 21 issue: 4 year: 1987 ident: 10.1016/j.cad.2016.08.006_br000300 article-title: Marching Cubes: a high resolution 3D surface reconstruction algorithm publication-title: ACM siggraph Comput Graphics doi: 10.1145/37402.37422 – volume: 40 start-page: 879 issue: 8 year: 2004 ident: 10.1016/j.cad.2016.08.006_br000035 article-title: Automobile body reinforcement by finite element optimization publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(03)00118-5 – year: 2013 ident: 10.1016/j.cad.2016.08.006_br000055 – volume: 1 start-page: 221 issue: 2 year: 2006 ident: 10.1016/j.cad.2016.08.006_br000020 article-title: Multidisciplinary design analysis and multi-objective optimisation applied to aircraft wing publication-title: WSEAS Trans Syst Control Cybernet – volume: 51 start-page: 987 issue: 5 year: 2015 ident: 10.1016/j.cad.2016.08.006_br000295 article-title: Multi-constrained topology optimization via the topological sensitivity publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1188-6 – volume: 188 start-page: 713 issue: 4 year: 2000 ident: 10.1016/j.cad.2016.08.006_br000245 article-title: The shape and topological optimization connection publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(99)00357-6 – volume: 196 start-page: 4354 issue: 41–44 year: 2007 ident: 10.1016/j.cad.2016.08.006_br000265 article-title: Topological sensitivity analysis for three-dimensional linear elasticity problem publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2007.05.006 – volume: 79 start-page: 1948 issue: 6 year: 2009 ident: 10.1016/j.cad.2016.08.006_br000025 article-title: Aircraft design optimization publication-title: Math Comput Simul doi: 10.1016/j.matcom.2007.07.001 – ident: 10.1016/j.cad.2016.08.006_br000165 – volume: 186 start-page: 387 year: 2000 ident: 10.1016/j.cad.2016.08.006_br000030 article-title: Optimal multi-objective low-thrust spacecraft trajectories publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(99)00393-X – volume: 21 start-page: 120 issue: 2 year: 2001 ident: 10.1016/j.cad.2016.08.006_br000190 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050176 – ident: 10.1016/j.cad.2016.08.006_br000090 – ident: 10.1016/j.cad.2016.08.006_br000250 – volume: 42 start-page: 665 issue: 5 year: 2010 ident: 10.1016/j.cad.2016.08.006_br000230 article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0534-6 – ident: 10.1016/j.cad.2016.08.006_br000155 doi: 10.1145/2659467.2675050 – volume: 27 start-page: 1 issue: 1–2 year: 2004 ident: 10.1016/j.cad.2016.08.006_br000220 article-title: Structural shape and topology optimization in a level-set-based framework of region representation publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-003-0363-y – volume: 192 start-page: 227 year: 2003 ident: 10.1016/j.cad.2016.08.006_br000215 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(02)00559-5 – year: 2010 ident: 10.1016/j.cad.2016.08.006_br000050 – volume: 13 issue: 4 year: 2013 ident: 10.1016/j.cad.2016.08.006_br000140 article-title: Direct geometry processing for telefabrication Yong Chen, Kang Li and Xiaoping Qian publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4024912 – ident: 10.1016/j.cad.2016.08.006_br000170 doi: 10.2514/6.2002-5614 – ident: 10.1016/j.cad.2016.08.006_br000085 doi: 10.6028/NIST.SP.1176 – volume: 37 start-page: 217 issue: 3 year: 2009 ident: 10.1016/j.cad.2016.08.006_br000010 article-title: A critical review of established methods of structural topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0217-0 – volume: 47 start-page: 49 issue: 1 year: 2013 ident: 10.1016/j.cad.2016.08.006_br000235 article-title: Efficient generation of large-scale pareto-optimal topologies publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-012-0807-3 – start-page: 103 year: 2011 ident: 10.1016/j.cad.2016.08.006_br000145 article-title: Additive manufacturing design and strategies – ident: 10.1016/j.cad.2016.08.006_br000275 – volume: 42 start-page: 4069 issue: 19 year: 2004 ident: 10.1016/j.cad.2016.08.006_br000095 article-title: Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm publication-title: Int J Prod Res doi: 10.1080/00207540410001708470 – volume: 34 start-page: 215:1 issue: 6 year: 2015 ident: 10.1016/j.cad.2016.08.006_br000115 article-title: Perceptual models of preference in 3D printing direction publication-title: ACM Trans Graph doi: 10.1145/2816795.2818121 – volume: 137 start-page: 469 year: 2006 ident: 10.1016/j.cad.2016.08.006_br000255 article-title: Topological-shape sensitivity method: Theory and applications publication-title: Solid Mech Appl – ident: 10.1016/j.cad.2016.08.006_br000200 – volume: 33 start-page: 117 issue: 5 year: 2014 ident: 10.1016/j.cad.2016.08.006_br000125 article-title: Clever support: Efficient support structure generation for digital fabrication publication-title: Comput Graph Forum doi: 10.1111/cgf.12437 – volume: 35 start-page: 89 issue: 1 year: 2008 ident: 10.1016/j.cad.2016.08.006_br000225 article-title: A new look at ESO and BESO optimization methods publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0140-4 – volume: 5 start-page: 1 year: 2013 ident: 10.1016/j.cad.2016.08.006_br000120 article-title: Cross-sectional structural analysis for 3D printing optimization publication-title: SIGGRAPH Asia – volume: 48 start-page: 295 issue: 2 year: 2013 ident: 10.1016/j.cad.2016.08.006_br000280 article-title: Stress-constrained topology optimization: A topological level-set approach publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0899-4 – volume: 137 issue: 3 year: 2015 ident: 10.1016/j.cad.2016.08.006_br000045 article-title: Hinge-Free compliant mechanism design via the Topological Level-Set publication-title: J Mech Des doi: 10.1115/1.4029335 – year: 2014 ident: 10.1016/j.cad.2016.08.006_br000105 article-title: Optimization of layered manufacturing process for reducing form errors with minimal support structures publication-title: J Manuf Syst – ident: 10.1016/j.cad.2016.08.006_br000110 doi: 10.1016/j.promfg.2015.09.041 – volume: 54 start-page: 331 issue: 4 year: 2001 ident: 10.1016/j.cad.2016.08.006_br000005 article-title: Topology optimization of continuum structures: A review publication-title: Appl Mech Rev doi: 10.1115/1.1388075 – volume: 137 issue: 10 year: 2015 ident: 10.1016/j.cad.2016.08.006_br000240 article-title: A pareto-optimal approach to multimaterial topology optimization publication-title: J Mech Des doi: 10.1115/1.4031088 – ident: 10.1016/j.cad.2016.08.006_br000080 doi: 10.2514/6.2014-2036 – volume: 65 start-page: 1 year: 2015 ident: 10.1016/j.cad.2016.08.006_br000185 article-title: Support slimming for single material based additive manufacturing publication-title: Comput-Aided Des doi: 10.1016/j.cad.2015.03.001 – volume: 63 start-page: 678 year: 2014 ident: 10.1016/j.cad.2016.08.006_br000070 article-title: Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures publication-title: Mater Des doi: 10.1016/j.matdes.2014.06.015 – year: 2015 ident: 10.1016/j.cad.2016.08.006_br000065 article-title: Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink publication-title: J Mech Des doi: 10.1115/1.4030989 – year: 2015 ident: 10.1016/j.cad.2016.08.006_br000075 article-title: Level set topology optimization of printed active composites publication-title: J Mech Des doi: 10.1115/1.4030994 – volume: 33 start-page: 98:1 issue: 4 year: 2014 ident: 10.1016/j.cad.2016.08.006_br000135 article-title: Bridging the gap: Automated steady scaffoldings for 3D printing publication-title: ACM Trans Graph doi: 10.1145/2601097.2601153 – year: 2003 ident: 10.1016/j.cad.2016.08.006_br000015 – volume: 31 start-page: 388 issue: 5 year: 2006 ident: 10.1016/j.cad.2016.08.006_br000040 article-title: A review of optimization of cast parts using topology optimization: II-Topology optimization with manufacturing constraints publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-005-0554-9 – volume: 44 start-page: 751 issue: 6 year: 2011 ident: 10.1016/j.cad.2016.08.006_br000175 article-title: Simultaneous optimization of cast part and parting direction using level set method publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0690-3 |
SSID | ssj0002139 |
Score | 2.5935545 |
Snippet | There is significant interest today in integrating additive manufacturing (AM) and topology optimization (TO). However, TO often leads to designs that are not... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 3D printing Additive manufacturing Fused deposition modeling Level-set Mathematical models Robustness (mathematics) Sensitivity Support structure Topological sensitivity Topology optimization |
Title | Support structure constrained topology optimization for additive manufacturing |
URI | https://dx.doi.org/10.1016/j.cad.2016.08.006 https://www.proquest.com/docview/1920716572 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwIYXm4TjtWFVUBUQnKnWz_JSKaFpBO7Dw27lzHF5CDIyJ7Cg5nz9_ju--I-QCNZ0kLFwRB4eJcAMRKYmn8L1MWST0uf-nez_h4ym7neWzBhnWuTAYVhmwv8J0j9bhTjdYs7uazzHHF7YSDBgDqkb1fRo1YwV6-dXbZ5hHmmQVBQa8wdb1yaaP8dISxUIT7lU8sejR72vTD5T2S89oj-wGzkgH1Wvtk4YtD8jOFyXBQzLB6pzApGmlB7t5tlQj88MCENbQdVUK4ZUuASEWIfWSAl-lGE-EiEcXstxgloNPWzwi09H1w3AchVIJkQarriOVuVgVyhnNYgvjAsTBGqeNTriMrezDxoUb45I01cbBGl8Umps40SnMeCUdy45Js1yW9oTQXKa6yA138ALMciWldb3Y9nXGoF2Wt0hcG0nooCOOX_Mk6oCxRwF2FWhXgSUuY94ilx9dVpWIxl-NWW158c0TBID8X93a9SiJMA1fBNBXsATPi_T0f089I9t4VcWvtEkTxtCeAwtZq453sw7ZGtzcjSfvi2LdAg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zOiqHvwZNLQ5xaOxEhAoCdIuG32mWCkEIWD_96ZdkvUGA5e226znd395tvuzDeEPKCmkwDH5TGYMB5uIDwp8BS-E0mDhD4p_ulOMjaYxS_zZF4jT1UuDIZVOuwvMb1Aa3el7azZXi8WmOMLW4kYGAOqRnUxjbqB6lRJnTR6w9Eg2wFyGEQlCwbIwQbV4WYR5qUE6oUGrBDyxLpHf7unX0BdeJ_-CTl2tJH2yp6dkprJz8jRNzHBc5JhgU4g07SUhN2-G6qQ_GENCKPppqyG8ElXABJLl31JgbJSDClC0KNLkW8x0aHIXLwgs_7z9GnguWoJngLDbjwZWV-m0moV-waGBriD0VZpFTDhG9GFvQvT2gZhqLQFN5-mimk_UCEseilsHF2Ser7KzRWhiQhVmmhmoQOxYVIIYzu-6aoohueipEn8ykhcOSlx_Jo3XsWMvXKwK0e7cqxy6bMmedw1WZc6GvsejivL8x-TgQPO72vWqkaJu5X4wYHBgiVYkobX_3vrPTkYTCdjPh5moxtyiHfKcJYWqcN4mlsgJRt55ybdFyMT37M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+structure+constrained+topology+optimization+for+additive+manufacturing&rft.jtitle=Computer+aided+design&rft.au=Mirzendehdel%2C+Amir+M&rft.au=Suresh%2C+Krishnan&rft.date=2016-12-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=81&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cad.2016.08.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |