On physical processes controlling nerve signalling

The intensive experimental and theoretical research into the nerve signalling, which lasts for more than 230 years, has provided many valuable pieces of knowledge but no definite, really satisfying solution. Such an unfavourable state is due to the extraordinary complexity of this phenomenon and eno...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. ST, Special topics Vol. 232; no. 20-22; pp. 3561 - 3576
Main Authors Mareš, Jiří J., Špička, Václav, Hubík, Pavel
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The intensive experimental and theoretical research into the nerve signalling, which lasts for more than 230 years, has provided many valuable pieces of knowledge but no definite, really satisfying solution. Such an unfavourable state is due to the extraordinary complexity of this phenomenon and enormous technical difficulties encountered by experiments. Therefore, the problem till now persists as a challenging subject of research, being opened to various approaches. In the present contribution we are thus trying to summarize the accessible experimental findings and compare them critically with existing alternative theories. Finally, we attempt to compile a minimal model of the signal transmission in nerves, intentionally based only on well turned-out physically transparent arguments. The model combines two types of diffusion processes, microscopic and macroscopic ones, which act simultaneously and ensure nerve signalling. The full-time evolution of the corresponding action potential, from its emergence, increase, decrease and recovery phase, is controlled by the two types of membrane channels: by dissipative protein-based channels of Hodgkin–Huxley type and randomly created non-dissipative fissures in membranes. This approach could be useful for the efforts aiming to the improvement of the current models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-023-01045-7