Gated reactions in discrete time and space

How much time does it take for two molecules to react? If a reaction occurs upon contact, the answer to this question boils down to the classic first-passage time problem: find the time it takes for the two molecules to meet. However, this is not always the case as molecules switch stochastically be...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 155; no. 23; pp. 234112 - 234130
Main Authors Scher, Yuval, Reuveni, Shlomi
Format Journal Article
LanguageEnglish
Published United States 21.12.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:How much time does it take for two molecules to react? If a reaction occurs upon contact, the answer to this question boils down to the classic first-passage time problem: find the time it takes for the two molecules to meet. However, this is not always the case as molecules switch stochastically between reactive and non-reactive states. The reaction is then said to be “gated” by the internal states of the molecules involved, which could have a dramatic influence on kinetics. A unified, continuous-time, approach to gated reactions on networks was presented in a recent paper [Scher and Reuveni, Phys. Rev. Lett. 127, 018301 (2021)]. Here, we build on this recent advancement and develop an analogous discrete-time version of the theory. Similar to continuous-time, we employ a renewal approach to show that the gated reaction time can always be expressed in terms of the corresponding ungated first-passage and return times, which yields formulas for the generating function of the gated reaction-time distribution and its corresponding mean and variance. In cases where the mean reaction time diverges, we show that the long-time asymptotics of the gated problem is inherited from its ungated counterpart. However, when molecules spend most of their time non-reactive, an interim regime of slower power-law decay emerges prior to the terminal asymptotics. The discretization of time also gives rise to resonances and anti-resonances, which were absent from the continuous-time picture. These features are illustrated using two case studies that also demonstrate how the general approach presented herein greatly simplifies the analysis of gated reactions.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0072393