Recovering Missing Slices of the Discrete Fourier Transform Using Ghosts
The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolv...
Saved in:
Published in | IEEE transactions on image processing Vol. 21; no. 10; pp. 4431 - 4441 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.10.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolving cyclic artifacts caused by missing slices of the DFT using redundant image regions is presented. The slices discussed here originate from the exact partitioning of the Discrete Fourier Transform (DFT) space, under the projective Discrete Radon Transform, called the discrete Fourier slice theorem. The method has a computational complexity of O(nlog 2 n) (for an n=N×N image) and is constructed from a new cyclic theory of Ghosts. This theory is also shown to unify several aspects of work done on Ghosts over the past three decades. This paper concludes with an application to fast, exact, non-iterative image reconstruction from a highly asymmetric set of rational angle projections that give rise to sets of sparse slices within the DFT. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2012.2206033 |