SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction

A 70-Mb SRAM is designed and fabricated on a 65-nm CMOS technology. It features a 0.57-/spl mu/m/sup 2/ 6T SRAM cell with large noise margin down to 0.7 V for low-voltage operation. The fully synchronized subarray contains an integrated leakage reduction scheme with dynamically controlled sleep tran...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 40; no. 4; pp. 895 - 901
Main Authors Zhang, K., Bhattacharya, U., Zhanping Chen, Hamzaoglu, F., Murray, D., Vallepalli, N., Yih Wang, Zheng, B., Bohr, M.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.04.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A 70-Mb SRAM is designed and fabricated on a 65-nm CMOS technology. It features a 0.57-/spl mu/m/sup 2/ 6T SRAM cell with large noise margin down to 0.7 V for low-voltage operation. The fully synchronized subarray contains an integrated leakage reduction scheme with dynamically controlled sleep transistor. SRAM virtual ground in standby is controlled by programmable bias transistors to achieve good voltage control with fine granularity under process skew. It also has a built-in programmable defect "screen" circuit for high volume manufacturing. The measurements showed that the SRAM leakage can be reduced by 3-5/spl times/ while maintaining the integrity of stored data.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2004.842846