Non-Parametric Detection of the Number of Signals: Hypothesis Testing and Random Matrix Theory

Detection of the number of signals embedded in noise is a fundamental problem in signal and array processing. This paper focuses on the non-parametric setting where no knowledge of the array manifold is assumed. First, we present a detailed statistical analysis of this problem, including an analysis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 57; no. 10; pp. 3930 - 3941
Main Authors Kritchman, S., Nadler, B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Detection of the number of signals embedded in noise is a fundamental problem in signal and array processing. This paper focuses on the non-parametric setting where no knowledge of the array manifold is assumed. First, we present a detailed statistical analysis of this problem, including an analysis of the signal strength required for detection with high probability, and the form of the optimal detection test under certain conditions where such a test exists. Second, combining this analysis with recent results from random matrix theory, we present a new algorithm for detection of the number of sources via a sequence of hypothesis tests. We theoretically analyze the consistency and detection performance of the proposed algorithm, showing its superiority compared to the standard minimum description length (MDL)-based estimator. A series of simulations confirm our theoretical analysis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2022897