Iterative Approximate Linear Programming Decoding of LDPC Codes With Linear Complexity

The problem of low complexity linear programming (LP) decoding of low-density parity-check (LDPC) codes is considered. An iterative algorithm, similar to min-sum and belief propagation, for efficient approximate solution of this problem was proposed by Vontobel and Koetter. In this paper, the conver...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 55; no. 11; pp. 4835 - 4859
Main Author Burshtein, D.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The problem of low complexity linear programming (LP) decoding of low-density parity-check (LDPC) codes is considered. An iterative algorithm, similar to min-sum and belief propagation, for efficient approximate solution of this problem was proposed by Vontobel and Koetter. In this paper, the convergence rate and computational complexity of this algorithm are studied using a scheduling scheme that we propose. In particular, we are interested in obtaining a feasible vector in the LP decoding problem that is close to optimal in the following sense. The distance, normalized by the block length, between the minimum and the objective function value of this approximate solution can be made arbitrarily small. It is shown that such a feasible vector can be obtained with a computational complexity which scales linearly with the block length. Combined with previous results that have shown that the LP decoder can correct some fixed fraction of errors we conclude that this error correction can be achieved with linear computational complexity. This is achieved by first applying the iterative LP decoder that decodes the correct transmitted codeword up to an arbitrarily small fraction of erroneous bits, and then correcting the remaining errors using some standard method. These conclusions are also extended to generalized LDPC codes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2030477