Modeling automotive gas-exchange solenoid valve actuators

We develop a finite-element analysis (FEA) model to describe transient and static operation of gas-exchange valves. Such valves, directly controlled by solenoids, are a promising method for enhancing automotive engine efficiency. The FEA model is validated by experimental testing on an actual automo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 41; no. 3; pp. 1155 - 1162
Main Authors Chladny, R.R., Koch, C.R., Lynch, A.F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We develop a finite-element analysis (FEA) model to describe transient and static operation of gas-exchange valves. Such valves, directly controlled by solenoids, are a promising method for enhancing automotive engine efficiency. The FEA model is validated by experimental testing on an actual automotive prototype valve. We show that a nonlinear lumped-parameter model that uses FEA results also closely matches experimental data. The lumped-parameter model is suitable for optimization of design and can be readily used for closed-loop simulation. We present a simplified lumped-parameter model to facilitate controller design. Finally, we compare a dynamic open-loop simulation with experimental results.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2004.841701