Phase-field simulation of tip splitting in dendritic growth of Fe-C alloy
Two types of dendrite tip splitting including dendrite orientation transition and twinned-like dendrites in Fe-C alloys were investigated by phase-field method. In equiaxed growth, the possible dendrite growth directions and the effect of supersaturation on tip splitting were discussed; the dendrite...
Saved in:
Published in | Journal of iron and steel research, international Vol. 24; no. 2; pp. 171 - 176 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.02.2017
Springer Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1006-706X 2210-3988 |
DOI | 10.1016/S1006-706X(17)30024-9 |
Cover
Loading…
Summary: | Two types of dendrite tip splitting including dendrite orientation transition and twinned-like dendrites in Fe-C alloys were investigated by phase-field method. In equiaxed growth, the possible dendrite growth directions and the effect of supersaturation on tip splitting were discussed; the dendrite orientation transition was observed, and it was found that the orientation regions of anisotropy parameters were reduced from three to two with increasing the supersaturation, which was due to the effect of interfacial anisotropy controlled by the solute in front of S/L interface changing with the increase of supersaturation. In directional solidification, it was found that the twinned-like dendrites were formed with the fixed anisotropy couples and no seaweed dendrites were observed; these were concluded from the results of competition between process anisotropy and inherent anisotropy. The formation process of twinned-like dendrite was investigated by tip splitting phenomenon, which was related to the changes of dendrite tips growth velocity. Then, the critical speed of tips splitting and solute concentration of twinned-like dendrites were investigated, and a new type of microsegregation in Fe-C alloys was proposed to supplement the dendrite growth theories. |
---|---|
Bibliography: | 11-3678/TF Tip splitting Fe C alloy Interracial anisotropy Dendritic growth Two types of dendrite tip splitting including dendrite orientation transition and twinned-like dendrites in Fe-C alloys were investigated by phase-field method. In equiaxed growth, the possible dendrite growth directions and the effect of supersaturation on tip splitting were discussed; the dendrite orientation transition was observed, and it was found that the orientation regions of anisotropy parameters were reduced from three to two with increasing the supersaturation, which was due to the effect of interracial anisotropy controlled by the solute in front of S/L interface changing with the increase of supersaturation. In directional solidification, it was found that the twinned like dendrites were formed with the fixed anisotropy couples and no seaweed dendrites were observed; these were concluded from the results of competition between process anisotropy and inherent anisotropy. The formation process of twinned-like dendrite was investigated by tip splitting phenomenon, which was related to the chan ges of dendrite tips growth velocity. Then, the critical speed of tips splitting and solute concentration of twinned-like dendrites were investigated, and a new type of microsegregation in Fe-C alloys was proposed to supplement the dendrite growth theories. |
ISSN: | 1006-706X 2210-3988 |
DOI: | 10.1016/S1006-706X(17)30024-9 |