Conformation-related excited-state charge transfer/separation of donor-π-acceptor chromophores

Understanding the excited-state charge transfer/separation (CT/CS) of donor-π-acceptor chromophores can provide guidance for designing and synthesizing advanced dyes to improve the performance of dye-sensitized solar cells (DSSCs) in practical applications. Herein, two newly synthesized electronic p...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 156; no. 17; p. 174902
Main Authors Kong, Jie, Zhang, Wei, Zhang, Xiaomin, Liu, Bo, Li, Yang, Xia, Andong
Format Journal Article
LanguageEnglish
Published United States 07.05.2022
Online AccessGet more information

Cover

Loading…
More Information
Summary:Understanding the excited-state charge transfer/separation (CT/CS) of donor-π-acceptor chromophores can provide guidance for designing and synthesizing advanced dyes to improve the performance of dye-sensitized solar cells (DSSCs) in practical applications. Herein, two newly synthesized electronic push-pull molecules, CS-14 and CS-15, that consist of carbazole donor and benzothiadiazole acceptor segments are chosen to explore the ultrafast dynamics of intramolecular CT/CS processes. The theoretical calculation results depict an excited-state intramolecular CT character for both dyes, while the dihedral angle between donor and acceptor of CS-14 is larger than that of CS-15, suggesting a more significant CT character of CS-14. Furthermore, compared to CS-14, the bond rotation of CS-15 between donor and π-bridge is restricted by employing the hexatomic ring, indicating the stronger molecular planarization of CS-15. Ultrafast spectroscopy clearly shows a solvent polarity-dependent excited-state species evolution from CT to CS-the CT character is observed in low-polar toluene solvent, while the feature of the CS state in polar tetrahydrofuran and acetone solvents is captured, which successfully proved a solvent polarity modulated excited-state CT/CS characters. We also found that though the generation of the CS state within CS-14 is slightly faster than that of CS-15, the charge recombination process of CS-15 with excellent planar conformation is much slower, providing enough time for a higher charge migration efficiency in DSSCs.
ISSN:1089-7690
DOI:10.1063/5.0092880