Conformation-related excited-state charge transfer/separation of donor-π-acceptor chromophores
Understanding the excited-state charge transfer/separation (CT/CS) of donor-π-acceptor chromophores can provide guidance for designing and synthesizing advanced dyes to improve the performance of dye-sensitized solar cells (DSSCs) in practical applications. Herein, two newly synthesized electronic p...
Saved in:
Published in | The Journal of chemical physics Vol. 156; no. 17; p. 174902 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
07.05.2022
|
Online Access | Get more information |
Cover
Loading…
Summary: | Understanding the excited-state charge transfer/separation (CT/CS) of donor-π-acceptor chromophores can provide guidance for designing and synthesizing advanced dyes to improve the performance of dye-sensitized solar cells (DSSCs) in practical applications. Herein, two newly synthesized electronic push-pull molecules, CS-14 and CS-15, that consist of carbazole donor and benzothiadiazole acceptor segments are chosen to explore the ultrafast dynamics of intramolecular CT/CS processes. The theoretical calculation results depict an excited-state intramolecular CT character for both dyes, while the dihedral angle between donor and acceptor of CS-14 is larger than that of CS-15, suggesting a more significant CT character of CS-14. Furthermore, compared to CS-14, the bond rotation of CS-15 between donor and π-bridge is restricted by employing the hexatomic ring, indicating the stronger molecular planarization of CS-15. Ultrafast spectroscopy clearly shows a solvent polarity-dependent excited-state species evolution from CT to CS-the CT character is observed in low-polar toluene solvent, while the feature of the CS state in polar tetrahydrofuran and acetone solvents is captured, which successfully proved a solvent polarity modulated excited-state CT/CS characters. We also found that though the generation of the CS state within CS-14 is slightly faster than that of CS-15, the charge recombination process of CS-15 with excellent planar conformation is much slower, providing enough time for a higher charge migration efficiency in DSSCs. |
---|---|
ISSN: | 1089-7690 |
DOI: | 10.1063/5.0092880 |