Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction
Two-dimensional Ruddlesden–Popper phase (2DRP) perovskites are known to exhibit improved photostability and environmental stability compared with their three-dimensional (3D) counterparts. However, fundamental questions remain over the interaction between the bulky alkylammoniums and the 2DRP perovs...
Saved in:
Published in | Nature photonics Vol. 14; no. 3; pp. 154 - 163 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Two-dimensional Ruddlesden–Popper phase (2DRP) perovskites are known to exhibit improved photostability and environmental stability compared with their three-dimensional (3D) counterparts. However, fundamental questions remain over the interaction between the bulky alkylammoniums and the 2DRP perovskite framework. Here, we unambiguously demonstrate that a sulfur–sulfur interaction is present for a new bulky alkylammonium, 2-(methylthio)ethylamine hydrochloride (MTEACl). In addition to a weaker van der Waals interaction, the interaction between sulfur atoms in two MTEA molecules enables a (MTEA)
2
(MA)
4
Pb
5
I
16
(
n
= 5) perovskite framework with enhanced charge transport and stabilization. The result is 2DRP perovskite solar cells with significantly improved efficiency and stability. Cells with a power conversion efficiency as high as 18.06% (17.8% certified) are achieved, along with moisture tolerance for up to 1,512 h (under 70% humidity conditions), thermal stability for 375 h (at 85 °C) and stability under continuous light stress (85% of the initial efficiency retained over 1,000 h of operation at the maximum power point).
Two-dimensional perovskite solar cells have been engineered to be robust against moisture, high temperatures and light stress. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-019-0572-6 |