Pre-iterative ADI-FDTD method for conductive medium
An efficient accuracy-improvement scheme is proposed to analyze electromagnetic problems with conductive medium. This scheme is based on interpreting the alternating-direction implicit finite-difference time-domain (ADI-FDTD) method as a special iterative solver for the Crank-Nicholson scheme. By ap...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 53; no. 6; pp. 1913 - 1918 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An efficient accuracy-improvement scheme is proposed to analyze electromagnetic problems with conductive medium. This scheme is based on interpreting the alternating-direction implicit finite-difference time-domain (ADI-FDTD) method as a special iterative solver for the Crank-Nicholson scheme. By applying an additional number of iterations to locations with relatively large field variation, the overall accuracy can be improved with little computational overhead. Special treatment of lossy medium in the ADI-FDTD method is also addressed. Finally, numerical examples demonstrate the effectiveness of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2005.848086 |