Characterisation of potential adhesins of the bacterium Pasteuria penetrans, and of putative receptors on the cuticle of Meloidogyne incognita, a nematode host

Pasteuria penetrans spores were fragmented by glass bead vortexing, producing exosporial membranes and spore fragments, which consisted of fibre bundles. Both exosporia and spore fragments are capable of host-specific attachment to the cuticle of Meloidogyne incognita, a root-knot nematode host. Put...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 100; no. 3; pp. 613 - 622
Main Authors PERSIDIS, A, LAY, J. G, MANOUSIS, T, BISHOP, A. H, ELLAR, D. J
Format Journal Article
LanguageEnglish
Published Cambridge Company of Biologists 01.11.1991
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pasteuria penetrans spores were fragmented by glass bead vortexing, producing exosporial membranes and spore fragments, which consisted of fibre bundles. Both exosporia and spore fragments are capable of host-specific attachment to the cuticle of Meloidogyne incognita, a root-knot nematode host. Putative M. incognita receptors appear to be soluble in beta-mercaptoethanol (BME) but not SDS, and are also sensitive to tryptic digestion and deglycosylation by endoglycosidase F. Polyclonal antibodies against intact spores and spore fragments of antispore antibodies produced 100% inhibition. The antibodies, however, did not show preferential staining of particular spore structures in thin section immunolabelling studies. Exposure of Pasteuria penetrans spores to HCl or urea-SDS-dithiothreitol renders them incapable of attachment to their host juveniles and extensively disrupts fibres that surround the spore core. Protein extracts from spore fragments or from exosporial membranes are identical, and urea-BME extracts from either structure, but not SDS extracts, can inhibit the attachment of spores to juveniles by 60-80%. An inhibitory BME extract from spore fragments was analysed by anion-exchange chromatography and adsorption onto host cuticle followed by immunoblotting. It appeared to contain six potential spore adhesins of approximate Mr 24-29, 38-47, 59, 89, 126, and 190 (x10(3)). Lectin affinity blotting with wheat germ agglutinin and concanavalin A showed that all of these proteins bear terminal N-acetylglucosamine residues and the 38-47 kDa band also bears terminal Glc/Man residues.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.100.3.613