Optimal Suppression of Laser Beam Jitter by High-Order RLS Adaptive Control
This paper demonstrates high-performance adaptive control for a laser-beam steering system, which exhibits high-order unknown jitter dynamics. The adaptive controller, which is based on a recursive least-squares finite-impulse-response lattice filter, has the distinguishing feature that variable and...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 16; no. 2; pp. 255 - 267 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper demonstrates high-performance adaptive control for a laser-beam steering system, which exhibits high-order unknown jitter dynamics. The adaptive controller, which is based on a recursive least-squares finite-impulse-response lattice filter, has the distinguishing feature that variable and high-order adaptive filters can be realized in the real-time implementation. Varying the order of the adaptive controller produces both fast adaptation and optimal steady-state performance in the experiment, without the large transients often produced by fixed-order recursive least-squares adaptive controllers. The steady-state performance of the high-order adaptive controller approximates closely the theoretically achievable minimum-variance steady-state performance, which is derived from the identified plant and jitter dynamics. Experimental results also illustrate the capability of the adaptive controller to adapt rapidly to changing jitter characteristics. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2007.903377 |