Optimal Suppression of Laser Beam Jitter by High-Order RLS Adaptive Control

This paper demonstrates high-performance adaptive control for a laser-beam steering system, which exhibits high-order unknown jitter dynamics. The adaptive controller, which is based on a recursive least-squares finite-impulse-response lattice filter, has the distinguishing feature that variable and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 16; no. 2; pp. 255 - 267
Main Authors Orzechowski, P.K., Chen, N.Y., Gibson, J.S., Tsu-Chin Tsao
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper demonstrates high-performance adaptive control for a laser-beam steering system, which exhibits high-order unknown jitter dynamics. The adaptive controller, which is based on a recursive least-squares finite-impulse-response lattice filter, has the distinguishing feature that variable and high-order adaptive filters can be realized in the real-time implementation. Varying the order of the adaptive controller produces both fast adaptation and optimal steady-state performance in the experiment, without the large transients often produced by fixed-order recursive least-squares adaptive controllers. The steady-state performance of the high-order adaptive controller approximates closely the theoretically achievable minimum-variance steady-state performance, which is derived from the identified plant and jitter dynamics. Experimental results also illustrate the capability of the adaptive controller to adapt rapidly to changing jitter characteristics.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2007.903377