On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range
We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2 mth order parabolic equation u t =−(− Δ) m u+| u| p in R N × R +, where m>1, p>1, with bounded integrable initial data u 0. We prove that in the supercritical Fujita range p> p F =1+2 m/...
Saved in:
Published in | Comptes rendus. Mathématique Vol. 335; no. 10; pp. 805 - 810 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English French |
Published |
Elsevier SAS
15.11.2002
|
Online Access | Get full text |
Cover
Loading…
Summary: | We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2
mth order parabolic equation
u
t
=−(−
Δ)
m
u+|
u|
p
in
R
N
×
R
+, where
m>1,
p>1, with bounded integrable initial data
u
0. We prove that in the supercritical Fujita range
p>
p
F
=1+2
m/
N any small global solution with nonnegative initial mass,
∫u
0
dx⩾0
, exhibits as
t→∞ the asymptotic behaviour given by the fundamental solution of the linear parabolic operator (unlike the case
p∈
]1,p
F]
where solutions can blow-up for any arbitrarily small initial data). A discrete spectrum of other possible asymptotic patterns and the corresponding monotone sequence of critical exponents
{p
l=1+2m/(l+N),
l=0,1,2,…}
, where
p
0=
p
F
, are discussed.
To cite this article: Yu.V. Egorov et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 805–810.
On considère le comportement asymptotique des solutions globales bornées du problème de Cauchy pour l'équation parabolique sémi-linéaire d'ordre 2
m
u
t
=−(−
Δ)
m
u+|
u|
p
in
R
N
×
R
+,
u(
x,0)=
u
0∈
X=
L
1(
R
N
)∩
L
∞(
R
N
), où
m>1,
p>1. On vérifie que dans le cas surcritique de Fujita
p>
p
F
=1+2
m/
N toute petite solution globale avec la donnée initiale vérifiant
∫u
0
dx⩾0
, montre le comportement asymptotique quand
t→∞ défini par la solution fondamentale de l'opérateur linéaire parabolique, à la différence du cas
p∈
]1,p
F]
quand la solution peut exploser pour la donnée initiale arbitrairement petite. Le spectre discret des pistes possibles et la suite correspondante des exponents critiques
{p
l=1+2m/(l+N),
l=0,1,2,…}
, où
p
0=
p
F
, sont descriptes.
Pour citer cet article : Yu.V. Egorov et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 805–810. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1631-073X 1778-3569 1778-3569 |
DOI: | 10.1016/S1631-073X(02)02567-0 |