Magnetic Tests of the CMS Superconducting Magnet

The superconducting magnet for CMS has been designed to reach a 4 T field in a free bore of 6 m over a length of 12.5 m, with a stored energy of 2.6 GJ at nominal current. The magnet has been extensively and successfully tested in a surface hall at CERN in August and October 2006. Its characteristic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 18; no. 2; pp. 356 - 361
Main Authors Kircher, F., Bredy, P., Fazilleau, P., Juster, F.-P., Levesy, B., Lottin, J.-P., Rousse, J.-Y., Campi, D., Cure, B., Gaddi, A., Herve, A., Maire, G., Perinic, G., Fabbricatore, P., Greco, M.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.06.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The superconducting magnet for CMS has been designed to reach a 4 T field in a free bore of 6 m over a length of 12.5 m, with a stored energy of 2.6 GJ at nominal current. The magnet has been extensively and successfully tested in a surface hall at CERN in August and October 2006. Its characteristics make it the largest superconducting solenoid ever built in terms of bending power for the physics, stored energy and stored energy per unit of cold mass. The tests of the magnet were carried out by charging it to progressively higher currents. Long current flattops were used for magnetic measurements, generally ending with triggered fast discharges. During the tests, all the relevant parameters related to electrical, magnetic, thermal and mechanical behavior have been recorded and will be reported in the paper. Special emphasis will be put on the results and analysis of phenomena related to induced fast discharges, such as coupling and quench-back effects.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2008.920571