The Bispectrum and Bicoherence for Quadratically Nonlinear Systems Subject to Non-Gaussian Inputs

In the analysis of data from nonlinear systems both the bispectrum and the bicoherence have emerged as useful tools. Both are frequently used to detect the influence of a nonlinear system on the joint probability distribution of the system input. Previous work has provided an analytical expression f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 57; no. 10; pp. 3879 - 3890
Main Authors Nichols, J.M., Olson, C.C., Michalowicz, J.V., Bucholtz, F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the analysis of data from nonlinear systems both the bispectrum and the bicoherence have emerged as useful tools. Both are frequently used to detect the influence of a nonlinear system on the joint probability distribution of the system input. Previous work has provided an analytical expression for the bispectrum of a quadratically nonlinear system output if the input is stationary, jointly Gaussian distributed. This work significantly generalizes the previous analysis by providing an analytical expression for the bispectrum of the response of quadratically nonlinear systems subject to stationary, jointly non-Gaussian inputs possessing arbitrary auto-correlation function. The expression is then used to determine the optimal input probability density function for detecting a quadratic nonlinearity in a second-order system. It is also shown how the expression can be used to design an optimal nonlinear filter for detecting deviations from normality in the probability density of a signal.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2024267