Biocompatible, High‐Performance, Wet‐Adhesive, Stretchable All‐Hydrogel Supercapacitor Implant Based on PANI@rGO/Mxenes Electrode and Hydrogel Electrolyte

Functional bioelectronic implants require energy storage units as power sources. Current energy storage implants face challenges of balancing factors including high‐performance, biocompatibility, conformal adhesion, and mechanical compatibility with soft tissues. An all‐hydrogel micro‐supercapacitor...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 30
Main Authors Liu, Yang, Zhou, Hui, Zhou, Weixiao, Meng, Si, Qi, Cheng, Liu, Zhou, Kong, Tiantian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Functional bioelectronic implants require energy storage units as power sources. Current energy storage implants face challenges of balancing factors including high‐performance, biocompatibility, conformal adhesion, and mechanical compatibility with soft tissues. An all‐hydrogel micro‐supercapacitor is presented that is lightweight, thin, stretchable, and wet‐adhesive with a high areal capacitance (45.62 F g−1) and energy density (333 μWh cm−2, 4.68 Wh kg−1). The all‐hydrogel micro‐supercapacitor is composed of polyaniline@reduced graphene oxide/Mxenes gel electrodes and a hydrogel electrolyte, with its interfaces robustly crosslinked, contributing to efficient and stable electrochemical performance. The in vitro and in vivo biocompatibility of the all‐hydrogel micro‐supercapacitor is evaluated by cardiomyocytes and mice models. The latter is systematically conducted by performing histological, immunostaining, and immunofluorescence analysis after adhering the all‐hydrogel micro‐supercapacitor implants onto hearts of mice for two weeks. These investigations offer promising energy storage modules for bioelectronics and shed light on future bio‐integration of electronic systems. An all‐hydrogel micro‐supercapacitor implant that is lightweight, thin, stretchable, and wet‐adhesive with a high areal capacitance (45.62 F g−1) and energy density (333 μWh cm−2, 4.68 Wh kg−1) is presented. Its in vitro and in vivo biocompatibility as an integrative implant is evaluated by cardiomyocytes and mice models. These investigations offer promising energy storage modules for future bio‐integrative electronic systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202101329