Short‐ and long‐term wildfire threat when adapting infrastructure for wildlife conservation in the boreal forest

Managers designing infrastructure in fire‐prone wildland areas require assessments of wildfire threat to quantify uncertainty due to future vegetation and climatic conditions. In this study, we combine wildfire simulation and forest landscape composition modeling to identify areas that would be high...

Full description

Saved in:
Bibliographic Details
Published inEcological applications Vol. 32; no. 6; pp. e2606 - n/a
Main Authors Dawe, Denyse A., Parisien, Marc‐André, Boulanger, Yan, Boucher, Jonathan, Beauchemin, Alexandre, Arseneault, Dominique
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Managers designing infrastructure in fire‐prone wildland areas require assessments of wildfire threat to quantify uncertainty due to future vegetation and climatic conditions. In this study, we combine wildfire simulation and forest landscape composition modeling to identify areas that would be highly susceptible to wildfire around a proposed conservation corridor in Québec, Canada. In this measure, managers have proposed raising the conductors of a new 735‐kV hydroelectric powerline above the forest canopy within a wildlife connectivity corridor to mitigate the impacts to threatened boreal woodland caribou (Rangifer tarandus). Retention of coniferous vegetation, however, can increase the likelihood of an intense wildfire damaging powerline infrastructure. To assess the likelihood of high‐intensity wildfires for the next 100 years, we evaluated three time periods (2020, 2070, 2120), three climate scenarios (observed, RCP 4.5, RCP 8.5), and four vegetation projections (static, no harvest, extensive harvesting, harvesting excluded in protected areas). Under present‐day conditions, we found a lower probability of high‐intensity wildfire within the corridor than in other parts of the study area, due to the protective influence of a nearby, poorly regenerated burned area. Wildfire probability will increase into the future, with strong, weather‐induced inflation in the number of annual ignitions and wildfire spread potential. However, a conversion to less‐flammable vegetation triggered by interactions between climate change and disturbance may attenuate this trend. By addressing the range of uncertainty of future conditions, we present a robust strategy to assist in decision‐making about long‐term risk management for both the proposed conservation measure and the powerline.
Bibliography:Funding information
Hydro‐Québec; Natural Resources Canada
ISSN:1051-0761
1939-5582
DOI:10.1002/eap.2606