Species-specific temperature sensitivity of TRPA1

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the variou...

Full description

Saved in:
Bibliographic Details
Published inTemperature (Austin) Vol. 2; no. 2; pp. 214 - 226
Main Authors Laursen, Willem J, Anderson, Evan O, Hoffstaetter, Lydia J, Bagriantsev, Sviatoslav N, Gracheva, Elena O
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 30.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2332-8940
2332-8959
DOI:10.1080/23328940.2014.1000702