MRI‐guided targeted needle placement during motion using hydrostatic actuators
Background Magnetic resonance imaging (MRI) has unique advantages for guiding interventions, but the narrow space is a major challenge. This study evaluates the feasibility of a remote‐controlled hydrostatic actuator system for MRI‐guided targeted needle placement. Methods The effects of the hydrost...
Saved in:
Published in | The international journal of medical robotics + computer assisted surgery Vol. 16; no. 2; pp. e2041 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background
Magnetic resonance imaging (MRI) has unique advantages for guiding interventions, but the narrow space is a major challenge. This study evaluates the feasibility of a remote‐controlled hydrostatic actuator system for MRI‐guided targeted needle placement.
Methods
The effects of the hydrostatic actuator system on MR image quality were evaluated. Using a reference step‐and‐shoot method (SS) and the proposed actuator‐assisted method (AA), two operators performed MRI‐guided needle placement in targets (n = 12) in a motion phantom.
Results
The hydrostatic actuator system exhibited negligible impact on MR image quality. In dynamic targets, AA was significantly more accurate and precise than SS, with mean ± SD needle‐to‐target error of 1.8 ± 1.0 mm (operator 1) and 1.3 ± 0.5 mm (operator 2). AA reduced the insertion time by 50% to 80% and total procedure time by 25%, compared to SS.
Conclusions
The proposed hydrostatic actuator system may improve accuracy and reduce procedure time for MRI‐guided targeted needle placement during motion. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1478-5951 1478-596X 1478-596X |
DOI: | 10.1002/rcs.2041 |