High-Throughput Determination of Interdiffusion Coefficients for Co-Cr-Fe-Mn-Ni High-Entropy Alloys

In this report, a combination of the diffusion multiple technique and the recently developed pragmatic numerical inverse method was employed for a high-throughput determination of interdiffusivity matrices in Co-Cr-FeMn-Ni high-entropy alloys (HEAs). Firstly, one face-centered cubic (fcc) quinary Co...

Full description

Saved in:
Bibliographic Details
Published inJournal of phase equilibria and diffusion Vol. 38; no. 4; pp. 457 - 465
Main Authors Chen, Weimin, Zhang, Lijun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this report, a combination of the diffusion multiple technique and the recently developed pragmatic numerical inverse method was employed for a high-throughput determination of interdiffusivity matrices in Co-Cr-FeMn-Ni high-entropy alloys (HEAs). Firstly, one face-centered cubic (fcc) quinary Co-Cr-Fe-Mn-Ni diffusion multiple at 1373 K was carefully prepared by means of the hot-pressing technique. Based on the composition profiles measured by the field emission electron probe micro analysis (FE-EPMA), the composition-dependent interdiffusivity matrices in quinary Co-Cr-Fe-Mn-Ni system at 1373 K were then efficiently determined using the pragmatic numerical inverse method. The determined interdiffusivities show good agreement with the limited results available in the literature. Moreover, the further comparison with the interdiffusivities in the lower-order systems indicates the sluggish diffusion effect in Co-Cr-Fe-Mn-Ni HEAs, which is however not observed in tracer diffusivities. In order for the convenience in further analysis, a generalized transformation relation among interdiffusivities with different dependent components in multicomponent systems was finally derived.
ISSN:1547-7037
1863-7345
1934-7243
DOI:10.1007/s11669-017-0569-0