Autophagy in neural stem cells and glia for brain health and diseases
Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for...
Saved in:
Published in | Neural regeneration research Vol. 19; no. 4; pp. 729 - 736 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Mumbai
Medknow Publications & Media Pvt. Ltd
01.04.2024
Department of Cancer Biology,University of Cincinnati College of Medicine,Cincinnati,OH,USA |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells. Autophagy arbitrates structural and functional remodeling during the cell differentiation process. Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases. Only recently, studies have begun to shed light on autophagy regulation in glia (microglia, astrocyte, and oligodendrocyte) in the brain. Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development, synaptic function, brain metabolism, cellular debris clearing, and restoration of damaged or injured tissues. Thus, this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions, neurodevelopmental disorders, and neurodegenerative diseases. This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases. |
---|---|
AbstractList | Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells. Autophagy arbitrates structural and functional remodeling during the cell differentiation process. Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases. Only recently, studies have begun to shed light on autophagy regulation in glia (microglia, astrocyte, and oligodendrocyte) in the brain. Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development, synaptic function, brain metabolism, cellular debris clearing, and restoration of damaged or injured tissues. Thus, this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions, neurodevelopmental disorders, and neurodegenerative diseases. This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases. |
Author | Nagayach, Aarti Wang, Chenran |
AuthorAffiliation | Department of Cancer Biology,University of Cincinnati College of Medicine,Cincinnati,OH,USA |
AuthorAffiliation_xml | – name: Department of Cancer Biology,University of Cincinnati College of Medicine,Cincinnati,OH,USA |
Author_xml | – sequence: 1 givenname: Aarti surname: Nagayach fullname: Nagayach, Aarti organization: Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA – sequence: 2 givenname: Chenran orcidid: 0000-0003-4181-2729 surname: Wang fullname: Wang, Chenran organization: Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA |
BookMark | eNpdkc1Lw0AQxRdRsK3ePS54ESR1v3dzLKV-QMGLnpdNskkT0k3dTZD2r3dj1IOnGXg_3sy8mYNz1zkLwA1GS4YRfcBC0oRTyZZUEULkGZhhJUUiU67OY_8rX4J5CA1CXKWEzsBmNfTdYWeqI6wddHbwpoWht3uY27YN0LgCVm1tYNl5mHkToZ01bb_7Voo6WBNsuAIXpWmDvf6pC_D-uHlbPyfb16eX9Wqb5HGpPikyZGgupcokTQ0jhHOBBCuYTEsjcq44zRRWxDKCGSK5EJJkpcxSZsoo5HQB7iffT-NK4yrddIN3caI-VaE5hWOjLUGEIYYwj_TdRB989zHY0Ot9HcazjLPdEDRRUiGsuCARvf2H_jlTjDGjqUhlpNBE5b4LwdtSH3y9N_6oMdLjF_QYsx5j1tMX6BcKWXkM |
CitedBy_id | crossref_primary_10_1016_j_ajhg_2024_02_001 crossref_primary_10_4103_NRR_NRR_D_23_01195 |
Cites_doi | 10.1002/glia.23646 10.1093/brain/awz198 10.1038/nature07976 10.3390/cells12060893 10.1016/j.bbrc.2011.06.117 10.1016/j.immuni.2021.09.014 10.7554/eLife.12245 10.1016/j.ajhg.2013.09.001 10.1038/ncb2152 10.1016/j.cmet.2020.01.015 10.1016/j.celrep.2022.111480 10.1073/pnas.1113421108 10.1021/acsbiomaterials.2c00228 10.1016/j.tem.2016.09.005 10.1080/15548627.2020.1719723 10.1038/s41421-020-0141-7 10.1002/glia.21047 10.1016/j.cell.2019.05.056 10.1126/sciimmunol.abb5077 10.1007/s10571-021-01159-3 10.1084/jem.20172158 10.1016/j.neuron.2018.08.017 10.3233/JAD-151101 10.1007/s10571-019-00696-2 10.1016/j.tins.2017.04.001 10.1007/978-1-0716-2409-8_7 10.3390/ijms24033035 10.14336/AD.2023.0106 10.1126/sciadv.aau8237 10.3389/fimmu.2022.868888 10.1016/j.stemcr.2018.12.011 10.1016/j.bbi.2019.07.009 10.1038/s41421-020-0166-y 10.1083/jcb.201507023 10.1038/nature06421 10.1523/JNEUROSCI.3788-13.2014 10.3390/cells11193002 10.1155/2018/9131397 10.1093/hmg/ddn042 10.1016/j.tins.2020.01.003 10.1016/j.stemcr.2016.01.011 10.1111/imr.12613 10.1186/s13024-020-00391-7 10.1159/000370112 10.1016/j.cmet.2013.11.005 10.1073/pnas.2023418118 10.1016/j.tcb.2009.07.007 10.1038/cddis.2014.358 10.1523/JNEUROSCI.1066-19.2019 10.1242/dev.156059 10.1074/jbc.M900573200 10.1084/jem.20182191 10.1016/j.cell.2018.09.048 10.1080/15548627.2016.1159375 10.7554/eLife.14810 10.1007/s00401-009-0619-8 10.1016/j.jmb.2020.02.012 10.1038/s12276-020-0455-4 10.3389/fcell.2020.608026 10.3390/ijms232314997 10.1016/j.stemcr.2021.09.013 10.1016/j.gde.2003.08.012 10.1038/mp.2016.103 10.1002/mco2.150 10.15252/embr.201338343 10.1371/journal.pgen.1005919 10.1016/j.neuron.2014.07.040 10.1038/s41586-018-0162-7 10.1074/jbc.M109.081125 10.1016/j.neurol.2019.04.003 10.1016/j.ceb.2020.02.012 10.1016/j.molcel.2021.10.001 10.3389/fnagi.2018.00378 10.2174/1871527314666150821101522 10.1186/s12974-021-02349-y 10.1016/j.nbd.2018.05.012 10.1186/s40035-021-00265-y 10.1016/j.bbi.2020.10.010 10.1523/ENEURO.0183-20.2021 10.1016/j.stem.2008.07.004 10.4161/auto.8.2.18535 10.1016/j.it.2020.07.004 10.1186/s40035-018-0143-7 10.1126/science.1196371 10.1007/s00335-016-9651-x 10.1038/emboj.2012.278 10.1186/s12943-019-0944-z 10.1186/s13052-016-0325-9 10.15252/embj.201899430 10.1016/S1474-4422(19)30320-5 10.1093/brain/awv393 10.3390/cells12040668 10.1186/s13578-021-00726-x 10.1002/jnr.24419 10.1016/j.stem.2009.09.013 10.5409/wjcp.v10.i3.15 10.3389/fnins.2022.977209 10.1177/0271678X17728162 10.1038/s41419-020-2644-4 10.1080/15548627.2021.1936358 10.1038/s41467-020-15119-w 10.1111/jnc.15327 10.1093/brain/awp292 10.1038/nn.3365 10.1111/j.1600-0854.2007.00677.x 10.1080/15548627.2018.1556946 10.1101/cshperspect.a020628 10.1038/nm1788 10.1038/ncomms2295 10.1128/MCB.00389-20 10.1056/NEJMoa1915722 10.1001/jama.2017.12141 10.1016/j.nbd.2019.104647 10.1080/15548627.2015.1100356 10.1016/j.neuint.2018.10.013 10.1016/j.nbd.2022.105766 10.1038/s41531-020-00137-8 10.1038/s41419-017-0252-8 10.5607/en.2019.28.2.229 10.1155/2012/282041 10.1038/emboj.2009.80 10.3389/fimmu.2020.578038 10.1038/s41598-021-03404-7 10.1091/mbc.e08-12-1248 10.3390/ijms18030598 10.1093/brain/awt131 10.3389/fnins.2021.630502 10.1038/s41592-022-01547-7 10.1038/s41419-019-1798-4 10.2174/0929867325666181031144605 10.1016/j.tibs.2019.04.007 10.1080/15548627.2019.1630222 10.4161/auto.29647 10.1126/sciadv.abn1298 10.1523/JNEUROSCI.0679-17.2018 10.2174/1570159X19666210407150632 10.1038/nature05925 10.3389/fneur.2020.570830 10.1038/s42003-022-04200-3 10.1007/s12035-017-0504-8 10.1038/s41423-021-00662-3 10.1007/s00401-011-0896-x 10.1038/s41418-019-0297-6 10.1038/nri2161 10.1021/nl501839q 10.1002/hipo.22503 10.1038/s42255-019-0137-5 |
ContentType | Journal Article |
Copyright | 2024. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION K9. 7X8 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.4103/1673-5374.382227 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-7958 |
EndPage | 736 |
ExternalDocumentID | zgsjzsyj_e202404015 10_4103_1673_5374_382227 |
GroupedDBID | --- --K -SE -S~ 0R~ 123 1B1 2B. 4.4 53G 5RS 5VR 5VS 7X7 8FI 8FJ 92F 92I 93N AAEDT AAKAS AALRI AAXDM AAXUO AAYXX ABUWG ABXLX ACGFS ADBBV ADMUD ADRAZ ADZCM AENEX AFKRA AFUIB ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BENPR CAJEE CCEZO CCPQU CHBEP CIEJG CITATION CS3 CW9 DIK DU5 DWQXO EBS EJD EMOBN EO8 FA0 FDB FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HMCUK HYE HZ~ IAO IEA IHE IHR IPNFZ ITC KQ8 M2M M41 M48 M5~ NQ- O9- OK1 OVD PGMZT PIMPY PSYQQ Q-- RIG RMW ROL RPM RPZ TCJ TEORI TGQ U1G U5O UKHRP W3E WFFXF K9. 7X8 4A8 PSX |
ID | FETCH-LOGICAL-c382t-db0a3c778b739a422556064d479fa6c5853b8182e421402c6672bf7b94afb81c3 |
IEDL.DBID | M48 |
ISSN | 1673-5374 |
IngestDate | Wed Nov 06 04:31:32 EST 2024 Fri Oct 25 07:59:55 EDT 2024 Thu Oct 10 21:18:27 EDT 2024 Wed Oct 30 12:27:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | neurodegenerative diseases autophagy neural stem cells oligodendrocyte astrocyte glia microglia neurodevelopmental disorders |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-db0a3c778b739a422556064d479fa6c5853b8182e421402c6672bf7b94afb81c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-4181-2729 |
OpenAccessLink | https://doi.org/10.4103/1673-5374.382227 |
PQID | 3111439697 |
PQPubID | 4671210 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_zgsjzsyj_e202404015 proquest_miscellaneous_2878018562 proquest_journals_3111439697 crossref_primary_10_4103_1673_5374_382227 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Mumbai |
PublicationPlace_xml | – name: Mumbai |
PublicationTitle | Neural regeneration research |
PublicationTitle_FL | Neural Regeneration Research |
PublicationYear | 2024 |
Publisher | Medknow Publications & Media Pvt. Ltd Department of Cancer Biology,University of Cincinnati College of Medicine,Cincinnati,OH,USA |
Publisher_xml | – name: Medknow Publications & Media Pvt. Ltd – name: Department of Cancer Biology,University of Cincinnati College of Medicine,Cincinnati,OH,USA |
References | Levine (R69-20230909) (2007); 7 Wang (R128-20230909) (2013); 16 Cho (R18-20230909) (2014); 10 Hosokawa (R46-20230909) (2009); 20 Zatyka (R146-20230909) (2020); 432 Romanov (R103-20230909) (2012); 31 Belgrad (R7-20230909) (2020); 40 Ehninger (R29-20230909) (2008); 14 González (R39-20230909) (2020); 31 Egan (R28-20230909) (2011); 331 Jänen (R52-20230909) (2010); 58 Phatnani (R96-20230909) (2015); 7 Singh (R113-20230909) (2009); 458 Jiang (R54-20230909) (2019); 18 Jin (R55-20230909) (2018); 10 Bantle (R6-20230909) (2021); 8 Kawabata (R61-20230909) (2020); 6 Guo (R40-20230909) (2020); 15 Xilouri (R139-20230909) (2013); 136 Hui (R50-20230909) (2019); 5 Ou-Yang (R92-20230909) (2023) Wang (R133-20230909) (2023); 24 Wu (R137-20230909) (2020) Heckmann (R43-20230909) (2019); 178 Levine (R70-20230909) (2019); 176 Dragich (R27-20230909) (2016); 5 Martinez (R79-20230909) (2011); 108 Vázquez (R126-20230909) (2012); 8 Deng (R23-20230909) (2021); 11 Jung (R58-20230909) (2020a); 52 Schäffner (R111-20230909) (2018); 99 Lu (R78-20230909) (2019); 8 Kim (R64-20230909) (2016); 5 Hollenstein (R45-20230909) (2020); 65 Booth (R9-20230909) (2017); 40 Sun (R119-20230909) (2022); 42 Kadir (R59-20230909) (2016); 12 Zhou (R149-20230909) (2011); 411 Minchev (R83-20230909) (2022); 23 Sofroniew (R116-20230909) (2020); 41 Li (R72-20230909) (2016); 6 Al-Beltagi (R4-20230909) (2021); 10 Byrne (R12-20230909) (2016); 139 Gabandé-Rodríguez (R35-20230909) (2020); 98 Yin (R145-20230909) (2018); 55 Cortes (R22-20230909) (2019); 122 Cho (R17-20230909) (2020); 27 Kano (R60-20230909) (2020); 6 Fader (R30-20230909) (2008); 9 Yim (R144-20230909) (2020); 6 Fimia (R33-20230909) (2007); 447 Zhen (R148-20230909) (2023); 12 Alam (R3-20230909) (2021) Bankston (R5-20230909) (2019); 67 di Domenico (R24-20230909) (2019); 12 Li (R71-20230909) (2021); 19 Ganley (R36-20230909) (2009); 284 Takahama (R120-20230909) (2018); 281 Motori (R85-20230909) (2013); 18 Le Duc (R66-20230909) (2019); 142 Butler (R11-20230909) (2021); 158 Sanchez-Varo (R105-20230909) (2012); 123 Sarret (R108-20230909) (2020); 176 Sandin (R106-20230909) (2017); 318 Germic (R38-20230909) (2019); 26 Hu (R48-20230909) (2019); 81 Cheng (R16-20230909) (2020); 16 Sakai (R104-20230909) (2019); 130 Wang (R132-20230909) (2022); 18 Plaza-Zabala (R97-20230909) (2017); 18 Xiao (R138-20230909) (2014); 34 Llorente (R76-20230909) (2022); 11 Martini-Stoica (R80-20230909) (2018); 215 Xu (R141-20230909) (2021); 118 Sato (R109-20230909) (2012); 3 Paik (R93-20230909) (2009); 5 Wang (R135-20230909) (2014); 15 Diot (R25-20230909) (2016); 27 Klionsky (R65-20230909) (2016); 12 Lu (R77-20230909) (2022); 3 Ha (R41-20230909) (2019); 28 Pomilio (R98-20230909) (2016); 26 Metur (R82-20230909) (2021); 18 Vanderver (R125-20230909) (2016); 22 Sanjuan (R107-20230909) (2007); 450 Xu (R140-20230909) (2022); 8 Nalls (R87-20230909) (2019); 18 Choi (R20-20230909) (2022); 8 Panicker (R94-20230909) (2019); 216 Lee (R68-20230909) (2019); 15 Wang (R134-20230909) (2019b); 10 Tang (R121-20230909) (2008); 17 Husain (R51-20230909) (2021); 15 Wang (R129-20230909) (2016); 212 Son (R117-20230909) (2016); 12 Stranks (R118-20230909) (2015); 7 Pavone (R95-20230909) (2017); 43 Borst (R10-20230909) (2021); 54 Okada (R90-20230909) (2022); 5 Doetsch (R26-20230909) (2003); 13 Aber (R1-20230909) (2022); 41 Henn (R44-20230909) (2022); 170 Zhao (R147-20230909) (2018); 38 Liu (R75-20230909) (2021); 11 Wang (R130-20230909) (2019a); 1 Choi (R19-20230909) (2020); 11 Ohri (R89-20230909) (2018); 38 Fernández (R31-20230909) (2018); 558 Aflaki (R2-20230909) (2020); 134 Menzies (R81-20230909) (2010); 133 Sofroniew (R115-20230909) (2010); 119 Jung (R57-20230909) (2020b); 16 Mirzadeh (R84-20230909) (2008); 3 Jülg (R56-20230909) (2021); 41 Thellung (R123-20230909) (2018); 9 Hua (R49-20230909) (2019); 39 Yazdankhah (R143-20230909) (2014); 5 Berglund (R8-20230909) (2020); 5 Houtman (R47-20230909) (2019); 38 He (R42-20230909) (2020); 11 Chen (R15-20230909) (2018); 2018 Münz (R86-20230909) (2022); 13 Chen (R14-20230909) (2021); 18 Pradel (R100-20230909) (2020); 11 Rodríguez-Bodero (R102-20230909) (2022); 16 Obernier (R88-20230909) (2019); 146 Simonovitch (R112-20230909) (2016); 51 Tang (R122-20230909) (2014); 83 Lin (R74-20230909) (2022); 19 Chandrasekaran (R13-20230909) (2021); 16 Vellai (R127-20230909) (2009); 19 Satoo (R110-20230909) (2009); 28 Wang (R131-20230909) (2021); 10 Singh (R114-20230909) (2012); 2012 Poultney (R99-20230909) (2013); 93 Watchon (R136-20230909) (2023); 12 Lee (R67-20230909) (2010); 285 Vainchtein (R124-20230909) (2020); 43 Lin (R73-20230909) (2016); 15 Kim (R62-20230909) (2017); 22 Franceschi (R34-20230909) (2017); 28 Jean (R53-20230909) (2020); 11 Xue (R142-20230909) (2014); 14 Ordureau (R91-20230909) (2021); 81 Collier (R21-20230909) (2021); 384 Galves (R37-20230909) (2019); 44 Qin (R101-20230909) (2021); 91 Kim (R63-20230909) (2011); 13 Filippelli (R32-20230909) (2022); 2515 |
References_xml | – volume: 67 start-page: 1745 year: (2019) ident: R5-20230909 article-title: Autophagy is essential for oligodendrocyte differentiation, survival and proper myelination publication-title: Glia doi: 10.1002/glia.23646 contributor: fullname: Bankston – volume: 142 start-page: 2617 year: (2019) ident: R66-20230909 article-title: Pathogenic WDFY3 variants cause neurodevelopmental disorders and opposing effects on brain size publication-title: Brain doi: 10.1093/brain/awz198 contributor: fullname: Le Duc – volume: 458 start-page: 1131 year: (2009) ident: R113-20230909 article-title: Autophagy regulates lipid metabolism publication-title: Nature doi: 10.1038/nature07976 contributor: fullname: Singh – volume: 12 start-page: 893 year: (2023) ident: R136-20230909 article-title: Autophagy function and benefits of autophagy induction in models of spinocerebellar ataxia type 3 publication-title: Cells doi: 10.3390/cells12060893 contributor: fullname: Watchon – volume: 411 start-page: 271 year: (2011) ident: R149-20230909 article-title: GSK-3beta inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.06.117 contributor: fullname: Zhou – volume: 54 start-page: 2194 year: (2021) ident: R10-20230909 article-title: Microglia: immune and non-immune functions publication-title: Immunity doi: 10.1016/j.immuni.2021.09.014 contributor: fullname: Borst – volume: 5 start-page: e12245 year: (2016) ident: R64-20230909 article-title: Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay publication-title: eLife doi: 10.7554/eLife.12245 contributor: fullname: Kim – volume: 93 start-page: 607 year: (2013) ident: R99-20230909 article-title: Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2013.09.001 contributor: fullname: Poultney – volume: 13 start-page: 132 year: (2011) ident: R63-20230909 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat Cell Biol doi: 10.1038/ncb2152 contributor: fullname: Kim – volume: 31 start-page: 472 year: (2020) ident: R39-20230909 article-title: AMPK and TOR: The Yin and Yang of cellular nutrient sensing and growth control publication-title: Cell Metab doi: 10.1016/j.cmet.2020.01.015 contributor: fullname: González – volume: 41 start-page: 111480 year: (2022) ident: R1-20230909 article-title: Oligodendroglial macroautophagy is essential for myelin sheath turnover to prevent neurodegeneration and death publication-title: Cell Rep doi: 10.1016/j.celrep.2022.111480 contributor: fullname: Aber – volume: 108 start-page: 17396 year: (2011) ident: R79-20230909 article-title: Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1113421108 contributor: fullname: Martinez – volume: 8 start-page: 4462 year: (2022) ident: R140-20230909 article-title: Lipid microcapsules promoted neural stem cell survival in the infarcted area of mice with ischemic stroke by inducing autophagy publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.2c00228 contributor: fullname: Xu – volume: 28 start-page: 199 year: (2017) ident: R34-20230909 article-title: Inflammaging and 'Garb-aging' publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2016.09.005 contributor: fullname: Franceschi – volume: 16 start-page: 2193 year: (2020) ident: R16-20230909 article-title: Microglial autophagy defect causes Parkinson disease-like symptoms by accelerating inflammasome activation in mice publication-title: Autophagy doi: 10.1080/15548627.2020.1719723 contributor: fullname: Cheng – volume: 6 start-page: 6 year: (2020) ident: R144-20230909 article-title: Lysosome biology in autophagy publication-title: Cell Discov doi: 10.1038/s41421-020-0141-7 contributor: fullname: Yim – volume: 58 start-page: 1766 year: (2010) ident: R52-20230909 article-title: Autophagy is activated by proteasomal inhibition and involved in aggresome clearance in cultured astrocytes publication-title: Glia doi: 10.1002/glia.21047 contributor: fullname: Jänen – volume: 178 start-page: 536 year: (2019) ident: R43-20230909 article-title: LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease publication-title: Cell doi: 10.1016/j.cell.2019.05.056 contributor: fullname: Heckmann – volume: 5 start-page: eabb5077 year: (2020) ident: R8-20230909 article-title: Microglial autophagy-associated phagocytosis is essential for recovery from neuroinflammation publication-title: Sci Immunol doi: 10.1126/sciimmunol.abb5077 contributor: fullname: Berglund – volume: 42 start-page: 2629 year: (2022) ident: R119-20230909 article-title: Heterogeneity and molecular markers for CNS glial cells revealed by single-cell transcriptomics publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-021-01159-3 contributor: fullname: Sun – volume: 215 start-page: 2355 year: (2018) ident: R80-20230909 article-title: TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading publication-title: J Exp Med doi: 10.1084/jem.20172158 contributor: fullname: Martini-Stoica – volume: 99 start-page: 1188 year: (2018) ident: R111-20230909 article-title: FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis publication-title: Neuron doi: 10.1016/j.neuron.2018.08.017 contributor: fullname: Schäffner – volume: 51 start-page: 915 year: (2016) ident: R112-20230909 article-title: Impaired autophagy in APOE4 astrocytes publication-title: J Alzheimers Dis doi: 10.3233/JAD-151101 contributor: fullname: Simonovitch – volume: 39 start-page: 1017 year: (2019) ident: R49-20230909 article-title: Enhancing the astrocytic clearance of extracellular α-synuclein aggregates by ginkgolides attenuates neural cell injury publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-019-00696-2 contributor: fullname: Hua – volume: 40 start-page: 358 year: (2017) ident: R9-20230909 article-title: The role of astrocyte dysfunction in Parkinson's disease pathogenesis publication-title: Trends Neurosci doi: 10.1016/j.tins.2017.04.001 contributor: fullname: Booth – volume: 2515 start-page: 99 year: (2022) ident: R32-20230909 article-title: Monitoring autophagy in neural stem and progenitor cells publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-2409-8_7 contributor: fullname: Filippelli – volume: 24 start-page: 3035 year: (2023) ident: R133-20230909 article-title: Supt16 haploinsufficiency impairs PI3K/AKT/mTOR/autophagy pathway in human pluripotent stem cells derived neural stem cells publication-title: Int J Mol Sci doi: 10.3390/ijms24033035 contributor: fullname: Wang – year: (2023) ident: R92-20230909 article-title: Molecular regulation mechanism of microglial autophagy in the pathology of Alzheimer's disease publication-title: Aging Dis doi: 10.14336/AD.2023.0106 contributor: fullname: Ou-Yang – volume: 5 start-page: eaau8237 year: (2019) ident: R50-20230909 article-title: GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA(A) receptor trafficking and social behavior publication-title: Sci Adv doi: 10.1126/sciadv.aau8237 contributor: fullname: Hui – volume: 13 start-page: 868888 year: (2022) ident: R86-20230909 article-title: Canonical and non-canonical functions of the autophagy machinery in MHC restricted antigen presentation publication-title: Front Immunol doi: 10.3389/fimmu.2022.868888 contributor: fullname: Münz – volume: 12 start-page: 213 year: (2019) ident: R24-20230909 article-title: Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson's disease publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2018.12.011 contributor: fullname: di Domenico – volume: 81 start-page: 509 year: (2019) ident: R48-20230909 article-title: Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease via promoting mitophagy publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2019.07.009 contributor: fullname: Hu – volume: 6 start-page: 33 year: (2020) ident: R61-20230909 article-title: Autophagosome biogenesis and human health publication-title: Cell Discov doi: 10.1038/s41421-020-0166-y contributor: fullname: Kawabata – volume: 212 start-page: 545 year: (2016) ident: R129-20230909 article-title: Elevated p62/SQSTM1 determines the fate of autophagy-deficient neural stem cells by increasing superoxide publication-title: J Cell Biol doi: 10.1083/jcb.201507023 contributor: fullname: Wang – volume: 450 start-page: 1253 year: (2007) ident: R107-20230909 article-title: Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis publication-title: Nature doi: 10.1038/nature06421 contributor: fullname: Sanjuan – volume: 34 start-page: 9607 year: (2014) ident: R138-20230909 article-title: Enhancing astrocytic lysosome biogenesis facilitates Aβclearance and attenuates amyloid plaque pathogenesis publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3788-13.2014 contributor: fullname: Xiao – volume: 11 start-page: 3002 year: (2022) ident: R76-20230909 article-title: Current understanding of the neural stem cell niches publication-title: Cells doi: 10.3390/cells11193002 contributor: fullname: Llorente – volume: 2018 start-page: 9131397 year: (2018) ident: R15-20230909 article-title: Autophagy in stem cell biology: a perspective on stem cell self-renewal and differentiation publication-title: Stem Cells Int doi: 10.1155/2018/9131397 contributor: fullname: Chen – volume: 17 start-page: 1540 year: (2008) ident: R121-20230909 article-title: Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways publication-title: Hum Mol Genet doi: 10.1093/hmg/ddn042 contributor: fullname: Tang – volume: 43 start-page: 144 year: (2020) ident: R124-20230909 article-title: Astrocytes and microglia: in sickness and in health publication-title: Trends Neurosci doi: 10.1016/j.tins.2020.01.003 contributor: fullname: Vainchtein – volume: 6 start-page: 396 year: (2016) ident: R72-20230909 article-title: EVA1A/TMEM166 regulates embryonic neurogenesis by autophagy publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2016.01.011 contributor: fullname: Li – volume: 281 start-page: 62 year: (2018) ident: R120-20230909 article-title: Autophagy limits activation of the inflammasomes publication-title: Immunol Rev doi: 10.1111/imr.12613 contributor: fullname: Takahama – volume: 15 start-page: 40 year: (2020) ident: R40-20230909 article-title: Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease publication-title: Mol Neurodegener doi: 10.1186/s13024-020-00391-7 contributor: fullname: Guo – volume: 7 start-page: 375 year: (2015) ident: R118-20230909 article-title: Autophagy controls acquisition of aging features in macrophages publication-title: J Innate Immun doi: 10.1159/000370112 contributor: fullname: Stranks – volume: 18 start-page: 844 year: (2013) ident: R85-20230909 article-title: Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance publication-title: Cell Metab doi: 10.1016/j.cmet.2013.11.005 contributor: fullname: Motori – volume: 118 start-page: e2023418118 year: (2021) ident: R141-20230909 article-title: Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2023418118 contributor: fullname: Xu – volume: 19 start-page: 487 year: (2009) ident: R127-20230909 article-title: The regulation of aging: does autophagy underlie longevity? publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2009.07.007 contributor: fullname: Vellai – volume: 5 start-page: e1403 year: (2014) ident: R143-20230909 article-title: The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone publication-title: Cell Death Dis doi: 10.1038/cddis.2014.358 contributor: fullname: Yazdankhah – volume: 40 start-page: 256 year: (2020) ident: R7-20230909 article-title: Autophagy in myelinating glia publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1066-19.2019 contributor: fullname: Belgrad – volume: 146 start-page: dev156059 year: (2019) ident: R88-20230909 article-title: Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain publication-title: Development doi: 10.1242/dev.156059 contributor: fullname: Obernier – volume: 284 start-page: 12297 year: (2009) ident: R36-20230909 article-title: ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy publication-title: J Biol Chem doi: 10.1074/jbc.M900573200 contributor: fullname: Ganley – volume: 216 start-page: 1411 year: (2019) ident: R94-20230909 article-title: Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia publication-title: J Exp Med doi: 10.1084/jem.20182191 contributor: fullname: Panicker – volume: 176 start-page: 11 year: (2019) ident: R70-20230909 article-title: Biological functions of autophagy genes: a disease perspective publication-title: Cell doi: 10.1016/j.cell.2018.09.048 contributor: fullname: Levine – volume: 12 start-page: 784 year: (2016) ident: R117-20230909 article-title: Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease publication-title: Autophagy doi: 10.1080/15548627.2016.1159375 contributor: fullname: Son – volume: 5 start-page: e14810 year: (2016) ident: R27-20230909 article-title: Autophagy linked FYVE (Alfy/ WDFY3) is required for establishing neuronal connectivity in the mammalian brain publication-title: Elife doi: 10.7554/eLife.14810 contributor: fullname: Dragich – volume: 119 start-page: 7 year: (2010) ident: R115-20230909 article-title: Astrocytes: biology and pathology publication-title: Acta Neuropathol doi: 10.1007/s00401-009-0619-8 contributor: fullname: Sofroniew – volume: 432 start-page: 2735 year: (2020) ident: R146-20230909 article-title: Autophagy in rare (NonLysosomal) neurodegenerative diseases publication-title: J Mol Biol doi: 10.1016/j.jmb.2020.02.012 contributor: fullname: Zatyka – start-page: 9 year: (2020) ident: R137-20230909 article-title: Autophagy and macrophage functions: inflammatory response and phagocytosis publication-title: Cells contributor: fullname: Wu – volume: 52 start-page: 921 year: (2020a) ident: R58-20230909 article-title: Autophagy as a decisive process for cell death publication-title: Exp Mol Med doi: 10.1038/s12276-020-0455-4 contributor: fullname: Jung – volume: 8 start-page: 608026 year: (2021) ident: R6-20230909 article-title: Mitochondrial dysfunction in astrocytes: a role in Parkinson's disease? publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2020.608026 contributor: fullname: Bantle – volume: 23 start-page: 14997 year: (2022) ident: R83-20230909 article-title: Neuroinflammation and autophagy in Parkinson's disease—novel perspectives publication-title: Int J Mol Sci doi: 10.3390/ijms232314997 contributor: fullname: Minchev – volume: 16 start-page: 2736 year: (2021) ident: R13-20230909 article-title: Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3 publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2021.09.013 contributor: fullname: Chandrasekaran – volume: 13 start-page: 543 year: (2003) ident: R26-20230909 article-title: A niche for adult neural stem cells publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2003.08.012 contributor: fullname: Doetsch – volume: 22 start-page: 1576 year: (2017) ident: R62-20230909 article-title: Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects publication-title: Mol Psychiatry doi: 10.1038/mp.2016.103 contributor: fullname: Kim – volume: 3 start-page: e150 year: (2022) ident: R77-20230909 article-title: Autophagy in health and disease: From molecular mechanisms to therapeutic target publication-title: MedComm (2020) doi: 10.1002/mco2.150 contributor: fullname: Lu – volume: 15 start-page: 1053 year: (2014) ident: R135-20230909 article-title: Autophagy-related gene Atg5 is essential for astrocyte differentiation in the developing mouse cortex publication-title: EMBO Rep doi: 10.15252/embr.201338343 contributor: fullname: Wang – volume: 12 start-page: e1005919 year: (2016) ident: R59-20230909 article-title: ALFY-controlled DVL3 autophagy regulates Wnt signaling, determining human brain size publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005919 contributor: fullname: Kadir – volume: 83 start-page: 1131 year: (2014) ident: R122-20230909 article-title: Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits publication-title: Neuron doi: 10.1016/j.neuron.2014.07.040 contributor: fullname: Tang – volume: 558 start-page: 136 year: (2018) ident: R31-20230909 article-title: Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice publication-title: Nature doi: 10.1038/s41586-018-0162-7 contributor: fullname: Fernández – volume: 285 start-page: 9262 year: (2010) ident: R67-20230909 article-title: Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies publication-title: J Biol Chem doi: 10.1074/jbc.M109.081125 contributor: fullname: Lee – volume: 176 start-page: 10 year: (2020) ident: R108-20230909 article-title: Leukodystrophies and genetic leukoencephalopathies in children publication-title: Revue Neurologique doi: 10.1016/j.neurol.2019.04.003 contributor: fullname: Sarret – volume: 65 start-page: 50 year: (2020) ident: R45-20230909 article-title: Autophagosomes are formed at a distinct cellular structure publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2020.02.012 contributor: fullname: Hollenstein – volume: 81 start-page: 5082 year: (2021) ident: R91-20230909 article-title: Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy publication-title: Mol Cell doi: 10.1016/j.molcel.2021.10.001 contributor: fullname: Ordureau – volume: 10 start-page: 378 year: (2018) ident: R55-20230909 article-title: A critical role of autophagy in regulating microglia polarization in neurodegeneration publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00378 contributor: fullname: Jin – volume: 15 start-page: 351 year: (2016) ident: R73-20230909 article-title: Novel lactulose and melibiose targeting autophagy to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3 publication-title: CNS Neurol Disord Drug Targets doi: 10.2174/1871527314666150821101522 contributor: fullname: Lin – volume: 18 start-page: 295 year: (2021) ident: R14-20230909 article-title: p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease publication-title: J Neuroinflammation doi: 10.1186/s12974-021-02349-y contributor: fullname: Chen – volume: 122 start-page: 83 year: (2019) ident: R22-20230909 article-title: TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: molecular mechanisms, cellular processes, and emerging therapeutic opportunities publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2018.05.012 contributor: fullname: Cortes – volume: 10 start-page: 39 year: (2021) ident: R131-20230909 article-title: Astrocyte dysfunction in Parkinson's disease: from the perspectives of transmitted α-synuclein and genetic modulation publication-title: Transl Neurodegener doi: 10.1186/s40035-021-00265-y contributor: fullname: Wang – volume: 91 start-page: 324 year: (2021) ident: R101-20230909 article-title: Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2020.10.010 contributor: fullname: Qin – year: (2021) ident: R3-20230909 article-title: Deficiency of microglial autophagy increases the density of oligodendrocytes and susceptibility to severe forms of seizures publication-title: eNeuro 8 doi: 10.1523/ENEURO.0183-20.2021 contributor: fullname: Alam – volume: 3 start-page: 265 year: (2008) ident: R84-20230909 article-title: Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.07.004 contributor: fullname: Mirzadeh – volume: 22 start-page: 916 year: (2016) ident: R125-20230909 article-title: Genetic leukoencephalopathies in adults publication-title: Continuum (Minneap Minn) contributor: fullname: Vanderver – volume: 8 start-page: 187 year: (2012) ident: R126-20230909 article-title: Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells publication-title: Autophagy doi: 10.4161/auto.8.2.18535 contributor: fullname: Vázquez – volume: 41 start-page: 758 year: (2020) ident: R116-20230909 article-title: Astrocyte reactivity: subtypes, states and functions in CNS innate immunity publication-title: Trends Immunol doi: 10.1016/j.it.2020.07.004 contributor: fullname: Sofroniew – volume: 8 start-page: 3 year: (2019) ident: R78-20230909 article-title: Suppression of astrocytic autophagy by αB-crystallin contributes to α-synuclein inclusion formation publication-title: Transl Neurodegener doi: 10.1186/s40035-018-0143-7 contributor: fullname: Lu – volume: 331 start-page: 456 year: (2011) ident: R28-20230909 article-title: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy publication-title: Science doi: 10.1126/science.1196371 contributor: fullname: Egan – volume: 27 start-page: 381 year: (2016) ident: R25-20230909 article-title: Mitophagy plays a central role in mitochondrial ageing publication-title: Mamm Genome doi: 10.1007/s00335-016-9651-x contributor: fullname: Diot – volume: 31 start-page: 4304 year: (2012) ident: R103-20230909 article-title: Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation publication-title: EMBO J doi: 10.1038/emboj.2012.278 contributor: fullname: Romanov – volume: 18 start-page: 17 year: (2019) ident: R54-20230909 article-title: The relationship between autophagy and the immune system and its applications for tumor immunotherapy publication-title: Mol Cancer doi: 10.1186/s12943-019-0944-z contributor: fullname: Jiang – volume: 43 start-page: 6 year: (2017) ident: R95-20230909 article-title: Ataxia in children: early recognition and clinical evaluation publication-title: Ital J Pediatr doi: 10.1186/s13052-016-0325-9 contributor: fullname: Pavone – volume: 38 start-page: e99430 year: (2019) ident: R47-20230909 article-title: Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3 publication-title: EMBO J doi: 10.15252/embj.201899430 contributor: fullname: Houtman – volume: 18 start-page: 1091 year: (2019) ident: R87-20230909 article-title: Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies publication-title: Lancet Neurol doi: 10.1016/S1474-4422(19)30320-5 contributor: fullname: Nalls – volume: 139 start-page: 765 year: (2016) ident: R12-20230909 article-title: EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy publication-title: Brain doi: 10.1093/brain/awv393 contributor: fullname: Byrne – volume: 12 start-page: 668 year: (2023) ident: R148-20230909 article-title: Autophagosome biogenesis publication-title: Cells doi: 10.3390/cells12040668 contributor: fullname: Zhen – volume: 11 start-page: 214 year: (2021) ident: R23-20230909 article-title: Autophagy deficiency in neurodevelopmental disorders publication-title: Cell Biosci doi: 10.1186/s13578-021-00726-x contributor: fullname: Deng – volume: 98 start-page: 284 year: (2020) ident: R35-20230909 article-title: Microglial phagocytosis in aging and Alzheimer's disease publication-title: J Neurosci Res doi: 10.1002/jnr.24419 contributor: fullname: Gabandé-Rodríguez – volume: 5 start-page: 540 year: (2009) ident: R93-20230909 article-title: FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.09.013 contributor: fullname: Paik – volume: 10 start-page: 15 year: (2021) ident: R4-20230909 article-title: Autism medical comorbidities publication-title: World J Clin Pediatr doi: 10.5409/wjcp.v10.i3.15 contributor: fullname: Al-Beltagi – volume: 16 start-page: 977209 year: (2022) ident: R102-20230909 article-title: Does the plasticity of neural stem cells and neurogenesis make them biosensors of disease and damage? publication-title: Front Neurosci doi: 10.3389/fnins.2022.977209 contributor: fullname: Rodríguez-Bodero – volume: 38 start-page: 1299 year: (2018) ident: R147-20230909 article-title: Strategic infarct location for post-stroke cognitive impairment: a multivariate lesion-symptom mapping study publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X17728162 contributor: fullname: Zhao – volume: 11 start-page: 440 year: (2020) ident: R42-20230909 article-title: Intraperitoneal injection of IFN-γrestores microglial autophagy, promotes amyloid-βclearance and improves cognition in APP/PS1 mice publication-title: Cell Death Dis doi: 10.1038/s41419-020-2644-4 contributor: fullname: He – volume: 18 start-page: 409 year: (2022) ident: R132-20230909 article-title: Enhanced autophagy in Becn1F121A/F121A knockin mice counteracts aging-related neural stem cell exhaustion and dysfunction publication-title: Autophagy doi: 10.1080/15548627.2021.1936358 contributor: fullname: Wang – volume: 11 start-page: 1386 year: (2020) ident: R19-20230909 article-title: Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration publication-title: Nat Commun doi: 10.1038/s41467-020-15119-w contributor: fullname: Choi – volume: 158 start-page: 621 year: (2021) ident: R11-20230909 article-title: Microglial phagocytosis of neurons in neurodegeneration, and its regulation publication-title: J Neurochem doi: 10.1111/jnc.15327 contributor: fullname: Butler – volume: 133 start-page: 93 year: (2010) ident: R81-20230909 article-title: Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3 publication-title: Brain doi: 10.1093/brain/awp292 contributor: fullname: Menzies – volume: 16 start-page: 532 year: (2013) ident: R128-20230909 article-title: FIP200 is required for maintenance and differentiation of postnatal neural stem cells publication-title: Nat Neurosci doi: 10.1038/nn.3365 contributor: fullname: Wang – volume: 9 start-page: 230 year: (2008) ident: R30-20230909 article-title: Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells publication-title: Traffic doi: 10.1111/j.1600-0854.2007.00677.x contributor: fullname: Fader – volume: 15 start-page: 753 year: (2019) ident: R68-20230909 article-title: TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia publication-title: Autophagy doi: 10.1080/15548627.2018.1556946 contributor: fullname: Lee – volume: 7 start-page: a020628 year: (2015) ident: R96-20230909 article-title: Astrocytes in neurodegenerative disease publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a020628 contributor: fullname: Phatnani – volume: 14 start-page: 843 year: (2008) ident: R29-20230909 article-title: Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis publication-title: Nat Med doi: 10.1038/nm1788 contributor: fullname: Ehninger – volume: 3 start-page: 1292 year: (2012) ident: R109-20230909 article-title: Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex publication-title: Nat Commun doi: 10.1038/ncomms2295 contributor: fullname: Sato – volume: 41 start-page: e0038920 year: (2021) ident: R56-20230909 article-title: Canonical and noncanonical autophagy pathways in microglia publication-title: Mol Cell Biol doi: 10.1128/MCB.00389-20 contributor: fullname: Jülg – volume: 384 start-page: 2406 year: (2021) ident: R21-20230909 article-title: Developmental consequences of defective ATG7-mediated autophagy in humans publication-title: N Engl J Med doi: 10.1056/NEJMoa1915722 contributor: fullname: Collier – volume: 318 start-page: 1182 year: (2017) ident: R106-20230909 article-title: The heritability of autism spectrum disorder publication-title: JAMA doi: 10.1001/jama.2017.12141 contributor: fullname: Sandin – volume: 134 start-page: 104647 year: (2020) ident: R2-20230909 article-title: A characterization of Gaucher iPS-derived astrocytes: potential implications for Parkinson's disease publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2019.104647 contributor: fullname: Aflaki – volume: 12 start-page: 1 year: (2016) ident: R65-20230909 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) publication-title: Autophagy doi: 10.1080/15548627.2015.1100356 contributor: fullname: Klionsky – volume: 130 start-page: 104316 year: (2019) ident: R104-20230909 article-title: Inflammation and neural repair after ischemic brain injury publication-title: Neurochem Int doi: 10.1016/j.neuint.2018.10.013 contributor: fullname: Sakai – volume: 170 start-page: 105766 year: (2022) ident: R44-20230909 article-title: Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity and cognitive impairment publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2022.105766 contributor: fullname: Henn – volume: 6 start-page: 33 year: (2020) ident: R60-20230909 article-title: Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations publication-title: NPJ Parkinsons Dis doi: 10.1038/s41531-020-00137-8 contributor: fullname: Kano – volume: 9 start-page: 166 year: (2018) ident: R123-20230909 article-title: Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death publication-title: Cell Death Dis doi: 10.1038/s41419-017-0252-8 contributor: fullname: Thellung – volume: 28 start-page: 229 year: (2019) ident: R41-20230909 article-title: Autophagy mediates astrogenesis in adult hippocampal neural stem cells publication-title: Exp Neurobiol doi: 10.5607/en.2019.28.2.229 contributor: fullname: Ha – volume: 2012 start-page: 282041 year: (2012) ident: R114-20230909 article-title: Lipophagy: connecting autophagy and lipid metabolism publication-title: Int J Cell Biol doi: 10.1155/2012/282041 contributor: fullname: Singh – volume: 28 start-page: 1341 year: (2009) ident: R110-20230909 article-title: The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy publication-title: EMBO J doi: 10.1038/emboj.2009.80 contributor: fullname: Satoo – volume: 11 start-page: 578038 year: (2020) ident: R100-20230909 article-title: Regulation of innate immune responses by autophagy: a goldmine for viruses publication-title: Front Immunol doi: 10.3389/fimmu.2020.578038 contributor: fullname: Pradel – volume: 11 start-page: 23907 year: (2021) ident: R75-20230909 article-title: Non-canonical function of FIP200 is required for neural stem cell maintenance and differentiation by limiting TBK1 activation and p62 aggregate formation publication-title: Sci Rep doi: 10.1038/s41598-021-03404-7 contributor: fullname: Liu – volume: 20 start-page: 1981 year: (2009) ident: R46-20230909 article-title: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy publication-title: Mol Biol Cell doi: 10.1091/mbc.e08-12-1248 contributor: fullname: Hosokawa – volume: 18 start-page: 598 year: (2017) ident: R97-20230909 article-title: Autophagy and microglia: novel partners in neurodegeneration and aging publication-title: Int J Mol Sci doi: 10.3390/ijms18030598 contributor: fullname: Plaza-Zabala – volume: 136 start-page: 2130 year: (2013) ident: R139-20230909 article-title: Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration publication-title: Brain doi: 10.1093/brain/awt131 contributor: fullname: Xilouri – volume: 15 start-page: 630502 year: (2021) ident: R51-20230909 article-title: APOE and Alzheimer's disease: from lipid transport to physiopathology and therapeutics publication-title: Front Neurosci doi: 10.3389/fnins.2021.630502 contributor: fullname: Husain – volume: 19 start-page: 976 year: (2022) ident: R74-20230909 article-title: Directed evolution of adeno-associated virus for efficient gene delivery to microglia publication-title: Nat Methods doi: 10.1038/s41592-022-01547-7 contributor: fullname: Lin – volume: 10 start-page: 561 year: (2019b) ident: R134-20230909 article-title: Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke publication-title: Cell Death Dis doi: 10.1038/s41419-019-1798-4 contributor: fullname: Wang – volume: 27 start-page: 955 year: (2020) ident: R17-20230909 article-title: Autophagy modulators and neuroinflammation publication-title: Curr Med Chem doi: 10.2174/0929867325666181031144605 contributor: fullname: Cho – volume: 44 start-page: 872 year: (2019) ident: R37-20230909 article-title: Ubiquitin signaling and degradation of aggregate-prone proteins publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2019.04.007 contributor: fullname: Galves – volume: 16 start-page: 512 year: (2020b) ident: R57-20230909 article-title: Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits publication-title: Autophagy doi: 10.1080/15548627.2019.1630222 contributor: fullname: Jung – volume: 10 start-page: 1761 year: (2014) ident: R18-20230909 article-title: Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome publication-title: Autophagy doi: 10.4161/auto.29647 contributor: fullname: Cho – volume: 8 start-page: eabn1298 year: (2022) ident: R20-20230909 article-title: Regulation of α-synuclein homeostasis and inflammasome activation by microglial autophagy publication-title: Sci Adv doi: 10.1126/sciadv.abn1298 contributor: fullname: Choi – volume: 38 start-page: 5900 year: (2018) ident: R89-20230909 article-title: Blocking autophagy in oligodendrocytes limits functional recovery after spinal cord injury publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0679-17.2018 contributor: fullname: Ohri – volume: 19 start-page: 1912 year: (2021) ident: R71-20230909 article-title: Autophagy &phagocytosis in neurological disorders and their possible cross-talk publication-title: Curr Neuropharmacol doi: 10.2174/1570159X19666210407150632 contributor: fullname: Li – volume: 447 start-page: 1121 year: (2007) ident: R33-20230909 article-title: Ambra1 regulates autophagy and development of the nervous system publication-title: Nature doi: 10.1038/nature05925 contributor: fullname: Fimia – volume: 11 start-page: 570830 year: (2020) ident: R53-20230909 article-title: Dissecting the genetic and etiological causes of primary microcephaly publication-title: Front Neurol doi: 10.3389/fneur.2020.570830 contributor: fullname: Jean – volume: 5 start-page: 1224 year: (2022) ident: R90-20230909 article-title: Development of microglia-targeting adeno-associated viral vectors as tools to study microglial behavior in vivo publication-title: Commun Biol doi: 10.1038/s42003-022-04200-3 contributor: fullname: Okada – volume: 55 start-page: 2454 year: (2018) ident: R145-20230909 article-title: Effects of DHA on hippocampal autophagy and lysosome function after traumatic brain injury publication-title: Mol Neurobiol doi: 10.1007/s12035-017-0504-8 contributor: fullname: Yin – volume: 18 start-page: 1096 year: (2021) ident: R82-20230909 article-title: Adaptive immunity at the crossroads of autophagy and metabolism publication-title: Cell Mol Immunol doi: 10.1038/s41423-021-00662-3 contributor: fullname: Metur – volume: 123 start-page: 53 year: (2012) ident: R105-20230909 article-title: Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0896-x contributor: fullname: Sanchez-Varo – volume: 26 start-page: 715 year: (2019) ident: R38-20230909 article-title: Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation publication-title: Cell Death Differ doi: 10.1038/s41418-019-0297-6 contributor: fullname: Germic – volume: 7 start-page: 767 year: (2007) ident: R69-20230909 article-title: Unveiling the roles of autophagy in innate and adaptive immunity publication-title: Nat Rev Immunol doi: 10.1038/nri2161 contributor: fullname: Levine – volume: 14 start-page: 5110 year: (2014) ident: R142-20230909 article-title: Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease publication-title: Nano Lett doi: 10.1021/nl501839q contributor: fullname: Xue – volume: 26 start-page: 194 year: (2016) ident: R98-20230909 article-title: Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in Aβinternalization publication-title: Hippocampus doi: 10.1002/hipo.22503 contributor: fullname: Pomilio – volume: 1 start-page: 1127 year: (2019a) ident: R130-20230909 article-title: Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells publication-title: Nat Metab doi: 10.1038/s42255-019-0137-5 contributor: fullname: Wang |
SSID | ssj0058923 |
Score | 2.354374 |
SecondaryResourceType | review_article |
Snippet | Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in... |
SourceID | wanfang proquest crossref |
SourceType | Aggregation Database |
StartPage | 729 |
SubjectTerms | Autophagy Stem cells |
Title | Autophagy in neural stem cells and glia for brain health and diseases |
URI | https://www.proquest.com/docview/3111439697 https://search.proquest.com/docview/2878018562 https://d.wanfangdata.com.cn/periodical/zgsjzsyj-e202404015 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46EbyIP3E6JYIIHjq3JE2WkwzZEEFPDr2FJG2KopmuG7r99b603aYg9tDLS9PwJe37vvx4D6EzZ1OnY-eijjYsYsSkkXSURxzcE5cMLhFOI9_d85sBu32Kn5bHoysA8z-lXcgnNRi9Nr8-plfwwQN_bbJ2i162uaBRTAVr0uDuxCpaIwx0etjIxxZrCnFHFsneFqXLRcs_a_jtpJbMc_1Te6d99sMF9bfQZsUdcbfs7G20kvodtNv1oJvfpvgcF7s5i2nyXdTrTkLIAJ1N8bPHIWolPBmCNuMwVZ9j7ROcvT5rDKQVm5AnApdHIgtLtWyT76FBv_dwfRNVKRMiCy0fR4lpaWqF6BhBpWYkBBgD0pEwIZ3mFrQBNeCiScoIKCtiORfEOGEk0w4Mlu6jmh_69ABh8POJs5JyrjkzOpE0bicgmK22jrSTVh1dzDFS72VkDAWKIuCpAp4q4KlKPOuoMQdRzbtYUfjNAh3iEsynCzOM7oCD9ulwkivQc-BCO0DS6uisAn9ZwyzLX2b59EWlJIRqA6kYH_7_piO0EYqWW28aqDYeTdJjYBVjc1Ko8ZNiyMD9kfa-AerXyBE |
link.rule.ids | 315,783,787,867,2228,24330,27936,27937 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+in+neural+stem+cells+and+glia+for+brain+health+and+diseases&rft.jtitle=Neural+regeneration+research&rft.au=Nagayach+Aarti&rft.au=Wang+Chenran&rft.date=2024-04-01&rft.pub=Medknow+Publications+%26+Media+Pvt.+Ltd&rft.issn=1673-5374&rft.eissn=1876-7958&rft.volume=19&rft.issue=4&rft.spage=729&rft.epage=736&rft_id=info:doi/10.4103%2F1673-5374.382227&rft.externalDBID=HAS_PDF_LINK |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgsjzsyj-e%2Fzgsjzsyj-e.jpg |