Autophagy in neural stem cells and glia for brain health and diseases
Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for...
Saved in:
Published in | Neural regeneration research Vol. 19; no. 4; pp. 729 - 736 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Mumbai
Medknow Publications & Media Pvt. Ltd
01.04.2024
Department of Cancer Biology,University of Cincinnati College of Medicine,Cincinnati,OH,USA |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells. Autophagy arbitrates structural and functional remodeling during the cell differentiation process. Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases. Only recently, studies have begun to shed light on autophagy regulation in glia (microglia, astrocyte, and oligodendrocyte) in the brain. Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development, synaptic function, brain metabolism, cellular debris clearing, and restoration of damaged or injured tissues. Thus, this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions, neurodevelopmental disorders, and neurodegenerative diseases. This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1673-5374 1876-7958 |
DOI: | 10.4103/1673-5374.382227 |