The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels

The heightened awareness concerning environmental preservation, resource scarcity, food safety, and nutrition has engendered the need for a more sustainable and resource-efficient agricultural production system. In this context, microalgae offer the potential to recover nutrients from waste streams...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied phycology Vol. 28; no. 4; pp. 2367 - 2377
Main Authors Coppens, Joeri, Grunert, Oliver, Van Den Hende, Sofie, Vanhoutte, Ilse, Boon, Nico, Haesaert, Geert, De Gelder, Leen
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The heightened awareness concerning environmental preservation, resource scarcity, food safety, and nutrition has engendered the need for a more sustainable and resource-efficient agricultural production system. In this context, microalgae offer the potential to recover nutrients from waste streams and subsequently use the microalgal biomass as a sustainable slow-release fertilizer. The aim of this study was to assess microalgal bacterial flocs treating aquaculture wastewater and marine microalgae as organic slow-release fertilizers for tomato cultivation. Comparable plant growth was observed using microalgal and commercial organic fertilizer treatments. Furthermore, the microalgal fertilizers improved the fruit quality through an increase in sugar and carotenoid content, although a lower tomato yield was obtained. An economic evaluation indicates the economic feasibility of the microalgae-based fertilizers. Further research is required to optimize the microalgae-based fertilizer composition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0921-8971
1573-5176
DOI:10.1007/s10811-015-0775-2