Effects of processing parameters on the characteristics of dissimilar friction-stir-welded joints between AA5058 aluminum alloy and PMMA polymer

In this research, newly modified solid-state friction-stir welding (FSW) technology was employed to bond the sheets of an aluminum-magnesium alloy (AA5058) and poly-methyl-methacrylate (PMMA) in a lap-joint design. Effects of processing parameters including tool rotational speed ( w ), traverse velo...

Full description

Saved in:
Bibliographic Details
Published inWelding in the world Vol. 62; no. 1; pp. 117 - 130
Main Authors Derazkola, Hamed Aghajani, Kashiry Fard, Reza, Khodabakhshi, Farzad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this research, newly modified solid-state friction-stir welding (FSW) technology was employed to bond the sheets of an aluminum-magnesium alloy (AA5058) and poly-methyl-methacrylate (PMMA) in a lap-joint design. Effects of processing parameters including tool rotational speed ( w ), traverse velocity ( v ), tilt angle and plunge depth on the surface morphology, materials flow pattern, microstructural characteristics, and mechanical properties of the dissimilar FSWed joints were studied. The geometry of U-antler macro-mechanical interlocking and interfacial micro- and nano-scale chemical bonding was mainly controlled by the tool tilting angle. A sound dissimilar weld with the highest tensile strength of around 45 MPa was attained at an optimum working window containing w  = 1600 rpm, v  = 25 mm/min, tool tilt angle of 2°, and plunge depth of 0.2 mm. Fracture of dissimilar lap joints occurred during transverse tensile-shear testing from the weld-polymer interface with a maximum strength ratio of ~ 60% by detachment of aluminum U-antler from the solidified polymer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0043-2288
1878-6669
DOI:10.1007/s40194-017-0517-y