Enhancing the Dissolution Stability of Hard Gelatin Capsules Using Activated Carbon as a Packaging Component

Hard gelatin capsule (HGC) shells are widely used to encapsulate drugs for oral delivery but are vulnerable to gelatin cross-linking, which can lead to slower and more variable in vitro dissolution rates. Adding proteolytic enzymes to the dissolution medium can attenuate these problems, but this com...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmaceutical sciences Vol. 107; no. 12; pp. 3080 - 3088
Main Authors Likar, Michael D., Carroll, Sophia C., Colgan, Stephen T., Yeoh, Thean, MacDonald, Bruce C., Johnson, Gail M., Space, J. Sean
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hard gelatin capsule (HGC) shells are widely used to encapsulate drugs for oral delivery but are vulnerable to gelatin cross-linking, which can lead to slower and more variable in vitro dissolution rates. Adding proteolytic enzymes to the dissolution medium can attenuate these problems, but this complicates dissolution testing and is only permitted by some regulatory authorities. Here, we expand the scope of our previous work to demonstrate that canisters containing activated carbon (AC) or polymeric films embedded with AC particles can be used as packaging components to attenuate gelatin cross-linking and improve the dissolution stability of hard gelatin-encapsulated products under accelerated International Council for Harmonisation conditions. We packaged acetaminophen and diphenhydramine HCl HGCs with or without AC canisters in induction-sealed high-density polyethylene bottles and with or without AC films in stoppered glass vials and stored these samples at 50°C/75% relative humidity through 3 months and at 40°C/75% relative humidity for 6 months. Samples packaged with AC canisters or AC films dissolved more rapidly than samples packaged without AC when differences were observed. These results demonstrate that different sources and formats of AC can enhance the dissolution stability of HGCs packaged in bottles and other potential packaging systems such as blister cards.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3549
1520-6017
DOI:10.1016/j.xphs.2018.08.009