Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm
Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extrem...
Saved in:
Published in | Multimedia tools and applications Vol. 77; no. 17; pp. 22629 - 22648 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-017-5023-0 |
Cover
Loading…
Abstract | Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extreme learning machine, and Jaya algorithm. The 10 repetitions of K-fold cross validation showed our method achieved perfect classification on two small datasets, and achieved a sensitivity of 99.64 ± 0.52%, a specificity of 99.14 ± 1.93%, and an accuracy of 99.57 ± 0.57% over a 255-image dataset. Our method performs better than six state-of-the-art approaches. Besides, Jaya algorithm performs better than genetic algorithm, particle swarm optimization, and bat algorithm as ELM training method. |
---|---|
AbstractList | Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extreme learning machine, and Jaya algorithm. The 10 repetitions of K-fold cross validation showed our method achieved perfect classification on two small datasets, and achieved a sensitivity of 99.64 ± 0.52%, a specificity of 99.14 ± 1.93%, and an accuracy of 99.57 ± 0.57% over a 255-image dataset. Our method performs better than six state-of-the-art approaches. Besides, Jaya algorithm performs better than genetic algorithm, particle swarm optimization, and bat algorithm as ELM training method. |
Author | Zhao, Guihu Govindaraj, Vishnu Varthanan Liu, Hong-Min Sun, Junding Wu, Xiaosheng Wang, Zhi-Heng Zhang, Yu-Dong Zhan, Tianmin Li, Jianwu |
Author_xml | – sequence: 1 givenname: Yu-Dong orcidid: 0000-0002-4870-1493 surname: Zhang fullname: Zhang, Yu-Dong email: yudongzhang@ieee.org organization: School of Computer Science and Technology, Henan Polytechnic University – sequence: 2 givenname: Guihu surname: Zhao fullname: Zhao, Guihu organization: School of Information Science and Engineering, Central South University – sequence: 3 givenname: Junding surname: Sun fullname: Sun, Junding organization: School of Computer Science and Technology, Henan Polytechnic University – sequence: 4 givenname: Xiaosheng surname: Wu fullname: Wu, Xiaosheng organization: School of Computer Science and Technology, Henan Polytechnic University – sequence: 5 givenname: Zhi-Heng surname: Wang fullname: Wang, Zhi-Heng organization: School of Computer Science and Technology, Henan Polytechnic University – sequence: 6 givenname: Hong-Min surname: Liu fullname: Liu, Hong-Min organization: School of Computer Science and Technology, Henan Polytechnic University – sequence: 7 givenname: Vishnu Varthanan surname: Govindaraj fullname: Govindaraj, Vishnu Varthanan email: gvvarthanan@gmail.com organization: Department of Instrumentation and Control Engineering, Kalasalingam University – sequence: 8 givenname: Tianmin surname: Zhan fullname: Zhan, Tianmin email: ztm@ujs.edu.cn organization: School of Technology, Nanjing Audit University – sequence: 9 givenname: Jianwu surname: Li fullname: Li, Jianwu email: ljw@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology |
BookMark | eNp9kE-L1jAQh4PsgvvHD-At4NXqTNI27VEWXZUFD7rnME3Tt1na5DXJij343TflFQRBT5kwv2dmeC7ZmQ_eMvYS4Q0CqLcJEWpRAaqqASEreMYusFGyUkrgWallB5VqAJ-zy5QeALBtRH3Bfn1dKWZ-pDyHJRycoYUPkZzno83WZBc8HzaeNp9nm53hq_Mhurzx8MPGROtxcf7AS3T27vujfc3tzxztavliKfq9t5KZnS8d8iP_TBtxWg77jHm9ZucTLcm--P1esfsP77_dfKzuvtx-unl3VxnZiVwNEkkNBuupwRGolf0EBpWqQUzStOVvqDU0jLarrR06M05D2wOMOPVI1Msr9uo09xhDOTJl_RAeoy8rtYCu7ZWERpQUnlImhpSinfQxuqJn0wh6t6xPlnWxrHfLGgqj_mKMy7Rry8Xi8l9SnMhUtviDjX9u-jf0BPZNlh0 |
CitedBy_id | crossref_primary_10_1007_s13735_019_00174_x crossref_primary_10_1080_21681163_2021_1986858 crossref_primary_10_1109_ACCESS_2020_3036831 crossref_primary_10_1007_s42452_020_2699_y crossref_primary_10_1007_s11042_018_6295_8 crossref_primary_10_1002_ima_22298 crossref_primary_10_1007_s12652_020_01789_3 crossref_primary_10_1016_j_bspc_2022_104395 crossref_primary_10_1016_j_ijcce_2021_05_001 crossref_primary_10_1111_exsy_13176 crossref_primary_10_1016_j_bspc_2023_104675 crossref_primary_10_1016_j_neunet_2019_01_013 crossref_primary_10_1515_bmt_2022_0336 crossref_primary_10_1002_ima_22937 crossref_primary_10_1007_s11042_021_11007_7 crossref_primary_10_1007_s00521_023_08992_1 crossref_primary_10_1371_journal_pone_0242899 crossref_primary_10_1016_j_heliyon_2024_e34402 crossref_primary_10_1142_S2196888824500246 crossref_primary_10_1007_s00500_021_06445_2 crossref_primary_10_1016_j_jocs_2018_11_007 crossref_primary_10_1177_1550147719831186 crossref_primary_10_1002_ima_23056 crossref_primary_10_1109_ACCESS_2020_2985405 crossref_primary_10_1016_j_jneumeth_2024_110319 crossref_primary_10_1177_0040517518764020 crossref_primary_10_1007_s00138_019_01020_0 crossref_primary_10_1109_TNSRE_2020_3040627 crossref_primary_10_1007_s11042_020_09676_x crossref_primary_10_1016_j_bspc_2022_103786 crossref_primary_10_1109_TSUSC_2018_2883822 crossref_primary_10_1007_s11831_021_09585_8 crossref_primary_10_1080_21681163_2022_2092034 crossref_primary_10_1007_s11042_018_6798_3 crossref_primary_10_1109_ACCESS_2021_3076347 crossref_primary_10_1177_0040517520908072 crossref_primary_10_1002_col_22602 crossref_primary_10_1016_j_bspc_2021_102919 crossref_primary_10_3390_cancers15194715 crossref_primary_10_1177_0040517519859933 crossref_primary_10_1016_j_ijcce_2021_09_002 crossref_primary_10_1080_15368378_2024_2301952 crossref_primary_10_1109_RBME_2021_3107372 crossref_primary_10_1080_21642583_2022_2045645 crossref_primary_10_1080_21681163_2023_2274411 crossref_primary_10_1109_ACCESS_2021_3134700 crossref_primary_10_3390_s21227480 crossref_primary_10_1016_j_neucom_2022_06_107 crossref_primary_10_1007_s10916_017_0836_y crossref_primary_10_1177_17298806221108603 crossref_primary_10_5604_01_3001_0014_7793 crossref_primary_10_1109_ACCESS_2020_3000609 crossref_primary_10_1080_21681163_2023_2245069 crossref_primary_10_1007_s12652_019_01642_2 crossref_primary_10_1080_03772063_2021_1958075 crossref_primary_10_1002_ima_22983 crossref_primary_10_1016_j_heliyon_2023_e21351 crossref_primary_10_1007_s11042_018_6134_y crossref_primary_10_1007_s13042_022_01513_x crossref_primary_10_32604_cmes_2022_019970 crossref_primary_10_1007_s11042_021_10937_6 crossref_primary_10_1007_s10994_023_06375_0 crossref_primary_10_1155_2021_6890024 crossref_primary_10_1109_TEM_2021_3073018 crossref_primary_10_1016_j_bbe_2020_03_003 crossref_primary_10_1016_j_ijcce_2021_08_002 crossref_primary_10_1088_1741_2552_ac4430 crossref_primary_10_1080_21681163_2021_1941262 |
Cites_doi | 10.1109/ACCESS.2016.2611530 10.1117/12.2216604 10.1166/jmihi.2016.1901 10.1007/s11432-015-5428-1 10.2528/PIER16070801 10.1109/ICATCCT.2015.7456936 10.1016/j.jhydrol.2016.10.013 10.3390/e17041734 10.1109/TKDE.2016.2580138 10.1007/s11042-016-4242-0 10.1002/hbm.23432 10.2528/PIER13010105 10.1007/s11042-017-4703-0 10.1016/j.eswa.2016.10.048 10.1016/j.csl.2017.01.009 10.3906/elk-1507-190 10.1016/j.neucom.2016.12.029 10.3390/e17107101 10.1038/nature21369 10.1007/s00778-014-0366-x 10.1002/tee.22226 10.2528/PIER15040602 10.1016/j.cad.2010.12.015 10.1007/s11042-017-4383-9 10.1007/s00170-016-8649-6 10.1140/epja/i2009-10799-0 10.2174/1871527315666161024142036 10.1016/j.neuroimage.2016.05.030 10.1177/0037549716666962 10.1007/s11042-017-4554-8 10.1016/j.bspc.2015.05.014 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2017 Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-017-5023-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 22648 |
ExternalDocumentID | 10_1007_s11042_017_5023_0 |
GrantInformation_xml | – fundername: NSFC grantid: 61602250 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20150983 funderid: http://dx.doi.org/10.13039/501100004608 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c382t-b31a7bc14f51d0a639f0c177402f3c6639ca6cabde84eeb8cdfb6900d1f91aa93 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 06:06:06 EDT 2025 Thu Jul 03 08:36:16 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Fri Feb 21 02:33:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Jaya algorithm Pathological brain detection Extreme learning machine Synthetic minority oversampling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-b31a7bc14f51d0a639f0c177402f3c6639ca6cabde84eeb8cdfb6900d1f91aa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4870-1493 |
PQID | 2086973052 |
PQPubID | 54626 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2086973052 crossref_primary_10_1007_s11042_017_5023_0 crossref_citationtrail_10_1007_s11042_017_5023_0 springer_journals_10_1007_s11042_017_5023_0 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | HazlettHCGuHBMunsellBCEarly brain development in infants at high risk for autism spectrum disorderNature2017542764134810.1038/nature21369 ChenKLvQLuYRobust regularized extreme learning machine for regression using iteratively reweighted least squaresNeurocomputing201723034535810.1016/j.neucom.2016.12.029 PhillipsPDongZYangJPathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimizationProg Electromagn Res2015152415810.2528/PIER15040602 Yuan TF (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 9:66 YangJPreclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)Entropy20151741795181310.3390/e17041734 DasSChowdhuryMKunduMKBrain MR image classification using multiscale geometric analysis of RippletProgress in Electromagnetics Research-Pier201313711710.2528/PIER13010105 Ying ZB, Li H, Ma JF et al (2016) Adaptively secure ciphertext-policy attribute-based encryption with dynamic policy updating. Science China-Information Sciences 59(4):16, 042701 Doreswamy, Salma MU (2015) BAT-ELM: a bio inspired model for prediction of breast cancer data. In: International Conference on Applied and Theoretical Computing And Communication Technology (Icatcct). Davangere, IEEE, pp. 501–506 WangMLiHCuiJTPINOCCHIO: Probabilistic Influence-Based Location Selection over Moving ObjectsIEEE Trans Knowl Data Eng201628113068308210.1109/TKDE.2016.2580138 SunPPathological brain detection based on wavelet entropy and Hu moment invariantsBiomed Mater Eng201526s112831290 ChenX-QFractal dimension estimation for developing pathological brain detection system based on Minkowski-Bouligand methodIEEE Access201645937594710.1109/ACCESS.2016.2611530 OyedotunOKhashmanAIris nevus diagnosis: convolutional neural network and deep belief networkTurk J Electr Eng Comput Sci20172521106111510.3906/elk-1507-190 ZhanTPathological brain detection by artificial intelligence in magnetic resonance imaging scanningProg Electromagn Res201615610513310.2528/PIER16070801 ZhouXXZhangGSDetection of abnormal MR brains based on wavelet entropy and feature selectionIEEJ Trans Electr Electron Eng201611336437310.1002/tee.22226 HuoYKAsmanAJPlassardAJSimultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusionHum Brain Mapp201738259961610.1002/hbm.23432 YangJIdentification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machineEntropy2015171066636682 LiHBhowmickSSSunAXConformity-aware influence maximization in online social networksVLDB J201524111714110.1007/s00778-014-0366-x RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015 Jiang Y, Zhu W (2017) Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed Tools Appl. doi:10.1007/s11042-017-4703-0 (Online) MustafaNMemonRALiJPA Classification Model for Imbalanced Medical Data based on PCA and Farther Distance based Synthetic Minority Oversampling TechniqueInt J Adv Comput Sci Appl2017816167 SunYA Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier EntropyJ Med Syst201640710.1007/s10916-016-0525-2 Wang H, Lv Y (2016) Smart pathological brain detection system by predator-prey particle swarm optimization and single-hidden layer neural-network. Multimed Tools Appl. doi:10.1007/s11042-016-4242-0 (Online) TsallisCNonadditive entropy: The concept and its useEur Phys J A200940325726680671510.1140/epja/i2009-10799-0 YangMDual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain DetectionAppl Sci20166610.3390/app6060169 RongYMZhangGJChangYIntegrated optimization model of laser brazing by extreme learning machine and genetic algorithmInt J Adv Manuf Technol2016879–122943295010.1007/s00170-016-8649-6 ChenPDuSPathological Brain Detection via Wavelet Packet Tsallis Entropy and Real-Coded Biogeography-based OptimizationFundamenta Informaticae20171511–42752913629903 Huo Y, Carass A, Resnick SM et al (2016) Combining Multi-atlas Segmentation with Brain Surface Estimation. In: Conference on Medical Imaging - Image Processing. San Diego, Spie-Int Soc Optical Engineering, p 97840E Chen H (2017) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl. doi:10.1007/s11042-017-4554-8 (Online) YadavBChSMathurSEstimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approachJ Hydrol201654337338510.1016/j.jhydrol.2016.10.013 Chen Y (2016) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping: A class-imbalanced susceptibility-weighted imaging data study. Multimed Tools Appl. doi:10.1007/s11042-017-4383-9 (Online) YukselTIntelligent visual servoing with extreme learning machine and fuzzy logicExpert Syst Appl20177234435610.1016/j.eswa.2016.10.048 HuoYPlassardAJCarassAConsistent cortical reconstruction and multi-atlas brain segmentationNeuroImage201613819721010.1016/j.neuroimage.2016.05.030 LiuGPathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machineSpringerPlus20154110.1186/s40064-015-1523-4 NayakDRDetection of unilateral hearing loss by Stationary Wavelet EntropyCNS Neurol Disord Drug Targets201716212212810.2174/1871527315666161024142036 MavaddatySAhadiSMSeyedinSSpeech enhancement using sparse dictionary learning in wavelet packet transform domainComputer Speech And Language201744224710.1016/j.csl.2017.01.009 ZhouX-XComparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machineSimulation201692986187110.1177/0037549716629227 PhillipsPDongZJiGDetection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D–DWT and WTA-KSVM trained by PSOTVACBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014 LuZA Pathological Brain Detection System Based on Radial Basis Function Neural NetworkJournal of Medical Imaging and Health Informatics2016651218122210.1166/jmihi.2016.1901 Y Sun (5023_CR25) 2016; 40 C Tsallis (5023_CR26) 2009; 40 RV Rao (5023_CR22) 2011; 43 S Mavaddaty (5023_CR16) 2017; 44 S Das (5023_CR6) 2013; 137 J Yang (5023_CR31) 2015; 17 HC Hazlett (5023_CR8) 2017; 542 M Yang (5023_CR32) 2016; 6 5023_CR27 H Li (5023_CR13) 2015; 24 G Liu (5023_CR14) 2015; 4 Z Lu (5023_CR15) 2016; 6 Y Huo (5023_CR9) 2016; 138 T Yuksel (5023_CR35) 2017; 72 5023_CR7 5023_CR3 P Phillips (5023_CR21) 2015; 152 YM Rong (5023_CR23) 2016; 87 M Wang (5023_CR28) 2016; 28 P Sun (5023_CR24) 2015; 26 O Oyedotun (5023_CR19) 2017; 25 N Mustafa (5023_CR17) 2017; 8 5023_CR1 P Phillips (5023_CR20) 2015; 21 X-X Zhou (5023_CR37) 2016; 92 DR Nayak (5023_CR18) 2017; 16 5023_CR10 5023_CR33 T Zhan (5023_CR36) 2016; 156 5023_CR12 5023_CR34 XX Zhou (5023_CR38) 2016; 11 K Chen (5023_CR5) 2017; 230 YK Huo (5023_CR11) 2017; 38 B Yadav (5023_CR29) 2016; 543 X-Q Chen (5023_CR2) 2016; 4 J Yang (5023_CR30) 2015; 17 P Chen (5023_CR4) 2017; 151 |
References_xml | – reference: Wang H, Lv Y (2016) Smart pathological brain detection system by predator-prey particle swarm optimization and single-hidden layer neural-network. Multimed Tools Appl. doi:10.1007/s11042-016-4242-0 (Online) – reference: YukselTIntelligent visual servoing with extreme learning machine and fuzzy logicExpert Syst Appl20177234435610.1016/j.eswa.2016.10.048 – reference: Yuan TF (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 9:66 – reference: TsallisCNonadditive entropy: The concept and its useEur Phys J A200940325726680671510.1140/epja/i2009-10799-0 – reference: PhillipsPDongZJiGDetection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D–DWT and WTA-KSVM trained by PSOTVACBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014 – reference: YangJIdentification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machineEntropy2015171066636682 – reference: YangMDual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain DetectionAppl Sci20166610.3390/app6060169 – reference: Doreswamy, Salma MU (2015) BAT-ELM: a bio inspired model for prediction of breast cancer data. In: International Conference on Applied and Theoretical Computing And Communication Technology (Icatcct). Davangere, IEEE, pp. 501–506 – reference: HazlettHCGuHBMunsellBCEarly brain development in infants at high risk for autism spectrum disorderNature2017542764134810.1038/nature21369 – reference: ChenX-QFractal dimension estimation for developing pathological brain detection system based on Minkowski-Bouligand methodIEEE Access201645937594710.1109/ACCESS.2016.2611530 – reference: Chen Y (2016) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping: A class-imbalanced susceptibility-weighted imaging data study. Multimed Tools Appl. doi:10.1007/s11042-017-4383-9 (Online) – reference: PhillipsPDongZYangJPathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimizationProg Electromagn Res2015152415810.2528/PIER15040602 – reference: RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015 – reference: ZhouX-XComparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machineSimulation201692986187110.1177/0037549716629227 – reference: Huo Y, Carass A, Resnick SM et al (2016) Combining Multi-atlas Segmentation with Brain Surface Estimation. In: Conference on Medical Imaging - Image Processing. San Diego, Spie-Int Soc Optical Engineering, p 97840E – reference: HuoYKAsmanAJPlassardAJSimultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusionHum Brain Mapp201738259961610.1002/hbm.23432 – reference: HuoYPlassardAJCarassAConsistent cortical reconstruction and multi-atlas brain segmentationNeuroImage201613819721010.1016/j.neuroimage.2016.05.030 – reference: Chen H (2017) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl. doi:10.1007/s11042-017-4554-8 (Online) – reference: LuZA Pathological Brain Detection System Based on Radial Basis Function Neural NetworkJournal of Medical Imaging and Health Informatics2016651218122210.1166/jmihi.2016.1901 – reference: SunPPathological brain detection based on wavelet entropy and Hu moment invariantsBiomed Mater Eng201526s112831290 – reference: MavaddatySAhadiSMSeyedinSSpeech enhancement using sparse dictionary learning in wavelet packet transform domainComputer Speech And Language201744224710.1016/j.csl.2017.01.009 – reference: SunYA Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier EntropyJ Med Syst201640710.1007/s10916-016-0525-2 – reference: LiuGPathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machineSpringerPlus20154110.1186/s40064-015-1523-4 – reference: OyedotunOKhashmanAIris nevus diagnosis: convolutional neural network and deep belief networkTurk J Electr Eng Comput Sci20172521106111510.3906/elk-1507-190 – reference: MustafaNMemonRALiJPA Classification Model for Imbalanced Medical Data based on PCA and Farther Distance based Synthetic Minority Oversampling TechniqueInt J Adv Comput Sci Appl2017816167 – reference: ZhanTPathological brain detection by artificial intelligence in magnetic resonance imaging scanningProg Electromagn Res201615610513310.2528/PIER16070801 – reference: YangJPreclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)Entropy20151741795181310.3390/e17041734 – reference: YadavBChSMathurSEstimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approachJ Hydrol201654337338510.1016/j.jhydrol.2016.10.013 – reference: WangMLiHCuiJTPINOCCHIO: Probabilistic Influence-Based Location Selection over Moving ObjectsIEEE Trans Knowl Data Eng201628113068308210.1109/TKDE.2016.2580138 – reference: ChenKLvQLuYRobust regularized extreme learning machine for regression using iteratively reweighted least squaresNeurocomputing201723034535810.1016/j.neucom.2016.12.029 – reference: NayakDRDetection of unilateral hearing loss by Stationary Wavelet EntropyCNS Neurol Disord Drug Targets201716212212810.2174/1871527315666161024142036 – reference: LiHBhowmickSSSunAXConformity-aware influence maximization in online social networksVLDB J201524111714110.1007/s00778-014-0366-x – reference: Ying ZB, Li H, Ma JF et al (2016) Adaptively secure ciphertext-policy attribute-based encryption with dynamic policy updating. Science China-Information Sciences 59(4):16, 042701 – reference: RongYMZhangGJChangYIntegrated optimization model of laser brazing by extreme learning machine and genetic algorithmInt J Adv Manuf Technol2016879–122943295010.1007/s00170-016-8649-6 – reference: Jiang Y, Zhu W (2017) Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed Tools Appl. doi:10.1007/s11042-017-4703-0 (Online) – reference: DasSChowdhuryMKunduMKBrain MR image classification using multiscale geometric analysis of RippletProgress in Electromagnetics Research-Pier201313711710.2528/PIER13010105 – reference: ZhouXXZhangGSDetection of abnormal MR brains based on wavelet entropy and feature selectionIEEJ Trans Electr Electron Eng201611336437310.1002/tee.22226 – reference: ChenPDuSPathological Brain Detection via Wavelet Packet Tsallis Entropy and Real-Coded Biogeography-based OptimizationFundamenta Informaticae20171511–42752913629903 – volume: 40 issue: 7 year: 2016 ident: 5023_CR25 publication-title: J Med Syst – volume: 8 start-page: 61 issue: 1 year: 2017 ident: 5023_CR17 publication-title: Int J Adv Comput Sci Appl – volume: 4 start-page: 5937 year: 2016 ident: 5023_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2611530 – ident: 5023_CR10 doi: 10.1117/12.2216604 – volume: 6 issue: 6 year: 2016 ident: 5023_CR32 publication-title: Appl Sci – volume: 6 start-page: 1218 issue: 5 year: 2016 ident: 5023_CR15 publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2016.1901 – ident: 5023_CR33 doi: 10.1007/s11432-015-5428-1 – volume: 156 start-page: 105 year: 2016 ident: 5023_CR36 publication-title: Prog Electromagn Res doi: 10.2528/PIER16070801 – ident: 5023_CR34 – ident: 5023_CR7 doi: 10.1109/ICATCCT.2015.7456936 – volume: 4 issue: 1 year: 2015 ident: 5023_CR14 publication-title: SpringerPlus – volume: 151 start-page: 275 issue: 1–4 year: 2017 ident: 5023_CR4 publication-title: Fundamenta Informaticae – volume: 543 start-page: 373 year: 2016 ident: 5023_CR29 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.10.013 – volume: 17 start-page: 1795 issue: 4 year: 2015 ident: 5023_CR30 publication-title: Entropy doi: 10.3390/e17041734 – volume: 28 start-page: 3068 issue: 11 year: 2016 ident: 5023_CR28 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2580138 – ident: 5023_CR27 doi: 10.1007/s11042-016-4242-0 – volume: 26 start-page: 1283 issue: s1 year: 2015 ident: 5023_CR24 publication-title: Biomed Mater Eng – volume: 38 start-page: 599 issue: 2 year: 2017 ident: 5023_CR11 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23432 – volume: 137 start-page: 1 year: 2013 ident: 5023_CR6 publication-title: Progress in Electromagnetics Research-Pier doi: 10.2528/PIER13010105 – ident: 5023_CR12 doi: 10.1007/s11042-017-4703-0 – volume: 72 start-page: 344 year: 2017 ident: 5023_CR35 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.048 – volume: 44 start-page: 22 year: 2017 ident: 5023_CR16 publication-title: Computer Speech And Language doi: 10.1016/j.csl.2017.01.009 – volume: 25 start-page: 1106 issue: 2 year: 2017 ident: 5023_CR19 publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1507-190 – volume: 230 start-page: 345 year: 2017 ident: 5023_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.029 – volume: 17 start-page: 6663 issue: 10 year: 2015 ident: 5023_CR31 publication-title: Entropy doi: 10.3390/e17107101 – volume: 542 start-page: 348 issue: 7641 year: 2017 ident: 5023_CR8 publication-title: Nature doi: 10.1038/nature21369 – volume: 24 start-page: 117 issue: 1 year: 2015 ident: 5023_CR13 publication-title: VLDB J doi: 10.1007/s00778-014-0366-x – volume: 11 start-page: 364 issue: 3 year: 2016 ident: 5023_CR38 publication-title: IEEJ Trans Electr Electron Eng doi: 10.1002/tee.22226 – volume: 152 start-page: 41 year: 2015 ident: 5023_CR21 publication-title: Prog Electromagn Res doi: 10.2528/PIER15040602 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 5023_CR22 publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – ident: 5023_CR1 doi: 10.1007/s11042-017-4383-9 – volume: 87 start-page: 2943 issue: 9–12 year: 2016 ident: 5023_CR23 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8649-6 – volume: 40 start-page: 257 issue: 3 year: 2009 ident: 5023_CR26 publication-title: Eur Phys J A doi: 10.1140/epja/i2009-10799-0 – volume: 16 start-page: 122 issue: 2 year: 2017 ident: 5023_CR18 publication-title: CNS Neurol Disord Drug Targets doi: 10.2174/1871527315666161024142036 – volume: 138 start-page: 197 year: 2016 ident: 5023_CR9 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.05.030 – volume: 92 start-page: 861 issue: 9 year: 2016 ident: 5023_CR37 publication-title: Simulation doi: 10.1177/0037549716666962 – ident: 5023_CR3 doi: 10.1007/s11042-017-4554-8 – volume: 21 start-page: 58 year: 2015 ident: 5023_CR20 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.05.014 |
SSID | ssj0016524 |
Score | 2.4824831 |
Snippet | Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22629 |
SubjectTerms | Algorithms Brain Computer Communication Networks Computer Science Data Structures and Information Theory Genetic algorithms Image detection Machine learning Medical imaging Multimedia Information Systems Neural networks Oversampling Particle swarm optimization Special Purpose and Application-Based Systems Wavelet analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxwxDLXocmkP0FJQFyjKoSdgpGQyGTIn1CIQQipCBSRuo3wuldhZ2l0Oe-C_Y89mdgEJzpnxIXbs59jxA_iRq1gFW2CaGkSVFbaKGcYZKrhyxHLKO2UoUfx9Xp5eF2c36iZduI1TW2XnE1tH7UeO7sgxSddlheao8sP7fxmxRlF1NVFofIBldMFa9WD51_H5xZ95HaFUidZW8wxjo-jqmu3jOUFPU8hLKwxcGX8ZmRZw81WFtA08J59hJSFG9nOm4i-wFJo1WO3YGFg6nGvw6dlowa_weDlEo2BEONy5N2aJDoL5MGnbrxpmp2w8bRABomQ2_NuMiMiOUU_n2FCjeTNg8xGv-wy9ON0lssQzMWDDtg8TV0zj2ZmZGmbuBiTjdrgO1yfHV0enWaJayJzU-SSzUpgD60QRlfDcIGyJ3AmEhjyP0iEqqZwpnbE-6CIEq52PFvNq7kWshDGV3IBeM2rCN2BWVTFK7aSxonC5te4gSllKq32gWfx94N021y7NISc6jLt6MUGZNFOjZmrSTM37sDv_5X42hOO9j7c73dXpPI7rhfX0Ya_T52L5TWGb7wvbgo8IoPSs52wbepP_D-E7gpSJ3UmW-AT4muVE priority: 102 providerName: ProQuest |
Title | Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm |
URI | https://link.springer.com/article/10.1007/s11042-017-5023-0 https://www.proquest.com/docview/2086973052 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDExApjuM2GQvqQ0VUCKhUpsh27ILUpoiWoQP_nXOatIAAiSmDnRty9t13uccHcOpxE2rpY5iqaej4MjQO-hmbcHURy_FYcWEDxZterdP3uwM-yPq4p3m1e56STC31qtmN2lYSa1U5OhoH4_Qix9Dd1vH1vcYydVDjGZNt4DroDmmeyvxJxFdntEKY35Kiqa9p7cBWBhJJY6HVXVjTSQm2cwIGkt3HEmx-mia4B-_3YzwHxHIM5xaNSMsAQWI9SyuuEiLnZDpPEPShZDJ-TiaWu47YMs6psLXlyZAsp7peEDTc9vchyaglhmScll7iikhi0hVzQcRoaGU8jfeh32o-XHWcjF3BUSzwZo5kVNSlor7hNHYFIhXjKopo0PUMUwhEQiVqSshYB77WMlCxkRhKuzE1IRUiZAdQSCaJPgQieWgMCxQTkvrKk1LVDWM1JoNY2_H7ZXDzzxypbPS4ZcAYRauhyVYzEWomspqJ3DKcLV95Wczd-GtzJdddlF3BaeRhsBai_eJeGc5zfa6WfxV29K_dx7CBECpYVJ1VoDB7fdMnCFNmsgrrQatdhWKj_XjdxOdls3d7V00P6weqg-RV |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QE4FCggAgXmABfA0q7tde1DhXi0Sl8RglbqzewzVGqcQoKqHPhL_EZmHG8CSPTWs-09eGbn-2Zndj6A56kKlTc5paleVkluqpAQznDBVRCXU84qzYni0aDon-T7p-p0BX7FuzDcVhljYhuo3djyGTkl6WVRkTuq9M3Ft4RVo7i6GiU05m5x4GeXlLJNtvc-kH1fpOnuzvH7ftKpCiQ2K9NpYjKpt4yVeVDSCU0IHYSVxIJEGjJLAFxZXVhtnC9z701pXTCUQgonQyW15uFLFPLXiGZUtIvW3u0MPn5a1C0K1cnoliIhLJaxjtpe1pN8FYZRQRFQJuJvJFzS238qsi3Q7d6B9Y6h4tu5S92FFd9swO2o_oBdMNiAW3-MMrwHPz-PyAmRBY5jOEXD8hPo_LRt92rQzHAya4hx0so4OmvGLJyH3EM60dzY3gxxMVL2NRJq8NkldroWQxy1fZ_0RDcO9_VMoz4f8hpfR_fh5FqM8ABWm3HjHwIaVYWQlTbTRuY2NcZuhSwrMlM6z7P_eyDib65tN_ec5TfO6-XEZrZMTZap2TK16MHLxScX86EfV728GW1Xd_t_Ui-9tQevoj2Xj_-72KOrF3sGN_rHR4f14d7g4DHcJPJWzvvdNmF1-v2Hf0IEaWqedl6J8OW6N8JvHyUjyA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqYTgwKOASCngA1yAFfbueus9IAS0UR8QVUCl3hY_Q6VmU0gQyoE_xq9jZmMngERvPds7h_3G8_CM5wN4nMtQe1NimupFnZWmDhn6GSq4cozlpLNSU6L4fljtHZcHJ_JkDX6ltzDUVplsYmeo3cTSHTkm6aqqUR1l_iLEtoijncGr868ZMUhRpTXRaSxU5NDPf2D6Nn25v4NYP8nzwe6nt3tZZBjIbKHyWWYKobeNFWWQwnGN3jpwKzAi4nkoLDrj2urKauO8Kr03yrpgMJ3kToRaaE2DmND8r-P-SvVg_c3u8OjDsoZRyUipq3iGflmkmmr3cE_QsxjyEBKdZsb_9oqrUPef6mzn9AY34XqMVtnrhXrdgjXfbsCNxATBomHYgGt_jDW8DT8_jlEhGZEdJ9PKDFFRMOdnXetXy8ycTectRp8omY1P2wmR6DHqJ51qanJvR2w5XvY5QxjoHpNFjosRG3c9oLiiW8cO9FwzfTYiGV_Gd-D4UkC4C7120vp7wIysQyiULbQRpc2NsduhKKrCKOeJB6APPP3mxsYZ6ETFcdaspjcTMg0i0xAyDe_D0-Un54sBIBdt3krYNdEWTJuV5vbhWcJztfxfYZsXC3sEV_AANO_2h4f34SrGcWrR-rYFvdm37_4Bxkoz8zAqJYPPl30OfgNldif0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+pathological+brain+detection+by+synthetic+minority+oversampling+technique%2C+extreme+learning+machine%2C+and+Jaya+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhang%2C+Yu-Dong&rft.au=Zhao%2C+Guihu&rft.au=Sun%2C+Junding&rft.au=Wu%2C+Xiaosheng&rft.date=2018-09-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=17&rft.spage=22629&rft.epage=22648&rft_id=info:doi/10.1007%2Fs11042-017-5023-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_017_5023_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |