Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm

Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extrem...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 77; no. 17; pp. 22629 - 22648
Main Authors Zhang, Yu-Dong, Zhao, Guihu, Sun, Junding, Wu, Xiaosheng, Wang, Zhi-Heng, Liu, Hong-Min, Govindaraj, Vishnu Varthanan, Zhan, Tianmin, Li, Jianwu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-017-5023-0

Cover

Loading…
Abstract Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extreme learning machine, and Jaya algorithm. The 10 repetitions of K-fold cross validation showed our method achieved perfect classification on two small datasets, and achieved a sensitivity of 99.64 ± 0.52%, a specificity of 99.14 ± 1.93%, and an accuracy of 99.57 ± 0.57% over a 255-image dataset. Our method performs better than six state-of-the-art approaches. Besides, Jaya algorithm performs better than genetic algorithm, particle swarm optimization, and bat algorithm as ELM training method.
AbstractList Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extreme learning machine, and Jaya algorithm. The 10 repetitions of K-fold cross validation showed our method achieved perfect classification on two small datasets, and achieved a sensitivity of 99.64 ± 0.52%, a specificity of 99.14 ± 1.93%, and an accuracy of 99.57 ± 0.57% over a 255-image dataset. Our method performs better than six state-of-the-art approaches. Besides, Jaya algorithm performs better than genetic algorithm, particle swarm optimization, and bat algorithm as ELM training method.
Author Zhao, Guihu
Govindaraj, Vishnu Varthanan
Liu, Hong-Min
Sun, Junding
Wu, Xiaosheng
Wang, Zhi-Heng
Zhang, Yu-Dong
Zhan, Tianmin
Li, Jianwu
Author_xml – sequence: 1
  givenname: Yu-Dong
  orcidid: 0000-0002-4870-1493
  surname: Zhang
  fullname: Zhang, Yu-Dong
  email: yudongzhang@ieee.org
  organization: School of Computer Science and Technology, Henan Polytechnic University
– sequence: 2
  givenname: Guihu
  surname: Zhao
  fullname: Zhao, Guihu
  organization: School of Information Science and Engineering, Central South University
– sequence: 3
  givenname: Junding
  surname: Sun
  fullname: Sun, Junding
  organization: School of Computer Science and Technology, Henan Polytechnic University
– sequence: 4
  givenname: Xiaosheng
  surname: Wu
  fullname: Wu, Xiaosheng
  organization: School of Computer Science and Technology, Henan Polytechnic University
– sequence: 5
  givenname: Zhi-Heng
  surname: Wang
  fullname: Wang, Zhi-Heng
  organization: School of Computer Science and Technology, Henan Polytechnic University
– sequence: 6
  givenname: Hong-Min
  surname: Liu
  fullname: Liu, Hong-Min
  organization: School of Computer Science and Technology, Henan Polytechnic University
– sequence: 7
  givenname: Vishnu Varthanan
  surname: Govindaraj
  fullname: Govindaraj, Vishnu Varthanan
  email: gvvarthanan@gmail.com
  organization: Department of Instrumentation and Control Engineering, Kalasalingam University
– sequence: 8
  givenname: Tianmin
  surname: Zhan
  fullname: Zhan, Tianmin
  email: ztm@ujs.edu.cn
  organization: School of Technology, Nanjing Audit University
– sequence: 9
  givenname: Jianwu
  surname: Li
  fullname: Li, Jianwu
  email: ljw@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology
BookMark eNp9kE-L1jAQh4PsgvvHD-At4NXqTNI27VEWXZUFD7rnME3Tt1na5DXJij343TflFQRBT5kwv2dmeC7ZmQ_eMvYS4Q0CqLcJEWpRAaqqASEreMYusFGyUkrgWallB5VqAJ-zy5QeALBtRH3Bfn1dKWZ-pDyHJRycoYUPkZzno83WZBc8HzaeNp9nm53hq_Mhurzx8MPGROtxcf7AS3T27vujfc3tzxztavliKfq9t5KZnS8d8iP_TBtxWg77jHm9ZucTLcm--P1esfsP77_dfKzuvtx-unl3VxnZiVwNEkkNBuupwRGolf0EBpWqQUzStOVvqDU0jLarrR06M05D2wOMOPVI1Msr9uo09xhDOTJl_RAeoy8rtYCu7ZWERpQUnlImhpSinfQxuqJn0wh6t6xPlnWxrHfLGgqj_mKMy7Rry8Xi8l9SnMhUtviDjX9u-jf0BPZNlh0
CitedBy_id crossref_primary_10_1007_s13735_019_00174_x
crossref_primary_10_1080_21681163_2021_1986858
crossref_primary_10_1109_ACCESS_2020_3036831
crossref_primary_10_1007_s42452_020_2699_y
crossref_primary_10_1007_s11042_018_6295_8
crossref_primary_10_1002_ima_22298
crossref_primary_10_1007_s12652_020_01789_3
crossref_primary_10_1016_j_bspc_2022_104395
crossref_primary_10_1016_j_ijcce_2021_05_001
crossref_primary_10_1111_exsy_13176
crossref_primary_10_1016_j_bspc_2023_104675
crossref_primary_10_1016_j_neunet_2019_01_013
crossref_primary_10_1515_bmt_2022_0336
crossref_primary_10_1002_ima_22937
crossref_primary_10_1007_s11042_021_11007_7
crossref_primary_10_1007_s00521_023_08992_1
crossref_primary_10_1371_journal_pone_0242899
crossref_primary_10_1016_j_heliyon_2024_e34402
crossref_primary_10_1142_S2196888824500246
crossref_primary_10_1007_s00500_021_06445_2
crossref_primary_10_1016_j_jocs_2018_11_007
crossref_primary_10_1177_1550147719831186
crossref_primary_10_1002_ima_23056
crossref_primary_10_1109_ACCESS_2020_2985405
crossref_primary_10_1016_j_jneumeth_2024_110319
crossref_primary_10_1177_0040517518764020
crossref_primary_10_1007_s00138_019_01020_0
crossref_primary_10_1109_TNSRE_2020_3040627
crossref_primary_10_1007_s11042_020_09676_x
crossref_primary_10_1016_j_bspc_2022_103786
crossref_primary_10_1109_TSUSC_2018_2883822
crossref_primary_10_1007_s11831_021_09585_8
crossref_primary_10_1080_21681163_2022_2092034
crossref_primary_10_1007_s11042_018_6798_3
crossref_primary_10_1109_ACCESS_2021_3076347
crossref_primary_10_1177_0040517520908072
crossref_primary_10_1002_col_22602
crossref_primary_10_1016_j_bspc_2021_102919
crossref_primary_10_3390_cancers15194715
crossref_primary_10_1177_0040517519859933
crossref_primary_10_1016_j_ijcce_2021_09_002
crossref_primary_10_1080_15368378_2024_2301952
crossref_primary_10_1109_RBME_2021_3107372
crossref_primary_10_1080_21642583_2022_2045645
crossref_primary_10_1080_21681163_2023_2274411
crossref_primary_10_1109_ACCESS_2021_3134700
crossref_primary_10_3390_s21227480
crossref_primary_10_1016_j_neucom_2022_06_107
crossref_primary_10_1007_s10916_017_0836_y
crossref_primary_10_1177_17298806221108603
crossref_primary_10_5604_01_3001_0014_7793
crossref_primary_10_1109_ACCESS_2020_3000609
crossref_primary_10_1080_21681163_2023_2245069
crossref_primary_10_1007_s12652_019_01642_2
crossref_primary_10_1080_03772063_2021_1958075
crossref_primary_10_1002_ima_22983
crossref_primary_10_1016_j_heliyon_2023_e21351
crossref_primary_10_1007_s11042_018_6134_y
crossref_primary_10_1007_s13042_022_01513_x
crossref_primary_10_32604_cmes_2022_019970
crossref_primary_10_1007_s11042_021_10937_6
crossref_primary_10_1007_s10994_023_06375_0
crossref_primary_10_1155_2021_6890024
crossref_primary_10_1109_TEM_2021_3073018
crossref_primary_10_1016_j_bbe_2020_03_003
crossref_primary_10_1016_j_ijcce_2021_08_002
crossref_primary_10_1088_1741_2552_ac4430
crossref_primary_10_1080_21681163_2021_1941262
Cites_doi 10.1109/ACCESS.2016.2611530
10.1117/12.2216604
10.1166/jmihi.2016.1901
10.1007/s11432-015-5428-1
10.2528/PIER16070801
10.1109/ICATCCT.2015.7456936
10.1016/j.jhydrol.2016.10.013
10.3390/e17041734
10.1109/TKDE.2016.2580138
10.1007/s11042-016-4242-0
10.1002/hbm.23432
10.2528/PIER13010105
10.1007/s11042-017-4703-0
10.1016/j.eswa.2016.10.048
10.1016/j.csl.2017.01.009
10.3906/elk-1507-190
10.1016/j.neucom.2016.12.029
10.3390/e17107101
10.1038/nature21369
10.1007/s00778-014-0366-x
10.1002/tee.22226
10.2528/PIER15040602
10.1016/j.cad.2010.12.015
10.1007/s11042-017-4383-9
10.1007/s00170-016-8649-6
10.1140/epja/i2009-10799-0
10.2174/1871527315666161024142036
10.1016/j.neuroimage.2016.05.030
10.1177/0037549716666962
10.1007/s11042-017-4554-8
10.1016/j.bspc.2015.05.014
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-017-5023-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 22648
ExternalDocumentID 10_1007_s11042_017_5023_0
GrantInformation_xml – fundername: NSFC
  grantid: 61602250
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20150983
  funderid: http://dx.doi.org/10.13039/501100004608
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c382t-b31a7bc14f51d0a639f0c177402f3c6639ca6cabde84eeb8cdfb6900d1f91aa93
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 06:06:06 EDT 2025
Thu Jul 03 08:36:16 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Fri Feb 21 02:33:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Jaya algorithm
Pathological brain detection
Extreme learning machine
Synthetic minority oversampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-b31a7bc14f51d0a639f0c177402f3c6639ca6cabde84eeb8cdfb6900d1f91aa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4870-1493
PQID 2086973052
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_2086973052
crossref_primary_10_1007_s11042_017_5023_0
crossref_citationtrail_10_1007_s11042_017_5023_0
springer_journals_10_1007_s11042_017_5023_0
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HazlettHCGuHBMunsellBCEarly brain development in infants at high risk for autism spectrum disorderNature2017542764134810.1038/nature21369
ChenKLvQLuYRobust regularized extreme learning machine for regression using iteratively reweighted least squaresNeurocomputing201723034535810.1016/j.neucom.2016.12.029
PhillipsPDongZYangJPathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimizationProg Electromagn Res2015152415810.2528/PIER15040602
Yuan TF (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 9:66
YangJPreclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)Entropy20151741795181310.3390/e17041734
DasSChowdhuryMKunduMKBrain MR image classification using multiscale geometric analysis of RippletProgress in Electromagnetics Research-Pier201313711710.2528/PIER13010105
Ying ZB, Li H, Ma JF et al (2016) Adaptively secure ciphertext-policy attribute-based encryption with dynamic policy updating. Science China-Information Sciences 59(4):16, 042701
Doreswamy, Salma MU (2015) BAT-ELM: a bio inspired model for prediction of breast cancer data. In: International Conference on Applied and Theoretical Computing And Communication Technology (Icatcct). Davangere, IEEE, pp. 501–506
WangMLiHCuiJTPINOCCHIO: Probabilistic Influence-Based Location Selection over Moving ObjectsIEEE Trans Knowl Data Eng201628113068308210.1109/TKDE.2016.2580138
SunPPathological brain detection based on wavelet entropy and Hu moment invariantsBiomed Mater Eng201526s112831290
ChenX-QFractal dimension estimation for developing pathological brain detection system based on Minkowski-Bouligand methodIEEE Access201645937594710.1109/ACCESS.2016.2611530
OyedotunOKhashmanAIris nevus diagnosis: convolutional neural network and deep belief networkTurk J Electr Eng Comput Sci20172521106111510.3906/elk-1507-190
ZhanTPathological brain detection by artificial intelligence in magnetic resonance imaging scanningProg Electromagn Res201615610513310.2528/PIER16070801
ZhouXXZhangGSDetection of abnormal MR brains based on wavelet entropy and feature selectionIEEJ Trans Electr Electron Eng201611336437310.1002/tee.22226
HuoYKAsmanAJPlassardAJSimultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusionHum Brain Mapp201738259961610.1002/hbm.23432
YangJIdentification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machineEntropy2015171066636682
LiHBhowmickSSSunAXConformity-aware influence maximization in online social networksVLDB J201524111714110.1007/s00778-014-0366-x
RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015
Jiang Y, Zhu W (2017) Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed Tools Appl. doi:10.1007/s11042-017-4703-0 (Online)
MustafaNMemonRALiJPA Classification Model for Imbalanced Medical Data based on PCA and Farther Distance based Synthetic Minority Oversampling TechniqueInt J Adv Comput Sci Appl2017816167
SunYA Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier EntropyJ Med Syst201640710.1007/s10916-016-0525-2
Wang H, Lv Y (2016) Smart pathological brain detection system by predator-prey particle swarm optimization and single-hidden layer neural-network. Multimed Tools Appl. doi:10.1007/s11042-016-4242-0 (Online)
TsallisCNonadditive entropy: The concept and its useEur Phys J A200940325726680671510.1140/epja/i2009-10799-0
YangMDual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain DetectionAppl Sci20166610.3390/app6060169
RongYMZhangGJChangYIntegrated optimization model of laser brazing by extreme learning machine and genetic algorithmInt J Adv Manuf Technol2016879–122943295010.1007/s00170-016-8649-6
ChenPDuSPathological Brain Detection via Wavelet Packet Tsallis Entropy and Real-Coded Biogeography-based OptimizationFundamenta Informaticae20171511–42752913629903
Huo Y, Carass A, Resnick SM et al (2016) Combining Multi-atlas Segmentation with Brain Surface Estimation. In: Conference on Medical Imaging - Image Processing. San Diego, Spie-Int Soc Optical Engineering, p 97840E
Chen H (2017) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl. doi:10.1007/s11042-017-4554-8 (Online)
YadavBChSMathurSEstimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approachJ Hydrol201654337338510.1016/j.jhydrol.2016.10.013
Chen Y (2016) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping: A class-imbalanced susceptibility-weighted imaging data study. Multimed Tools Appl. doi:10.1007/s11042-017-4383-9 (Online)
YukselTIntelligent visual servoing with extreme learning machine and fuzzy logicExpert Syst Appl20177234435610.1016/j.eswa.2016.10.048
HuoYPlassardAJCarassAConsistent cortical reconstruction and multi-atlas brain segmentationNeuroImage201613819721010.1016/j.neuroimage.2016.05.030
LiuGPathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machineSpringerPlus20154110.1186/s40064-015-1523-4
NayakDRDetection of unilateral hearing loss by Stationary Wavelet EntropyCNS Neurol Disord Drug Targets201716212212810.2174/1871527315666161024142036
MavaddatySAhadiSMSeyedinSSpeech enhancement using sparse dictionary learning in wavelet packet transform domainComputer Speech And Language201744224710.1016/j.csl.2017.01.009
ZhouX-XComparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machineSimulation201692986187110.1177/0037549716629227
PhillipsPDongZJiGDetection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D–DWT and WTA-KSVM trained by PSOTVACBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014
LuZA Pathological Brain Detection System Based on Radial Basis Function Neural NetworkJournal of Medical Imaging and Health Informatics2016651218122210.1166/jmihi.2016.1901
Y Sun (5023_CR25) 2016; 40
C Tsallis (5023_CR26) 2009; 40
RV Rao (5023_CR22) 2011; 43
S Mavaddaty (5023_CR16) 2017; 44
S Das (5023_CR6) 2013; 137
J Yang (5023_CR31) 2015; 17
HC Hazlett (5023_CR8) 2017; 542
M Yang (5023_CR32) 2016; 6
5023_CR27
H Li (5023_CR13) 2015; 24
G Liu (5023_CR14) 2015; 4
Z Lu (5023_CR15) 2016; 6
Y Huo (5023_CR9) 2016; 138
T Yuksel (5023_CR35) 2017; 72
5023_CR7
5023_CR3
P Phillips (5023_CR21) 2015; 152
YM Rong (5023_CR23) 2016; 87
M Wang (5023_CR28) 2016; 28
P Sun (5023_CR24) 2015; 26
O Oyedotun (5023_CR19) 2017; 25
N Mustafa (5023_CR17) 2017; 8
5023_CR1
P Phillips (5023_CR20) 2015; 21
X-X Zhou (5023_CR37) 2016; 92
DR Nayak (5023_CR18) 2017; 16
5023_CR10
5023_CR33
T Zhan (5023_CR36) 2016; 156
5023_CR12
5023_CR34
XX Zhou (5023_CR38) 2016; 11
K Chen (5023_CR5) 2017; 230
YK Huo (5023_CR11) 2017; 38
B Yadav (5023_CR29) 2016; 543
X-Q Chen (5023_CR2) 2016; 4
J Yang (5023_CR30) 2015; 17
P Chen (5023_CR4) 2017; 151
References_xml – reference: Wang H, Lv Y (2016) Smart pathological brain detection system by predator-prey particle swarm optimization and single-hidden layer neural-network. Multimed Tools Appl. doi:10.1007/s11042-016-4242-0 (Online)
– reference: YukselTIntelligent visual servoing with extreme learning machine and fuzzy logicExpert Syst Appl20177234435610.1016/j.eswa.2016.10.048
– reference: Yuan TF (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 9:66
– reference: TsallisCNonadditive entropy: The concept and its useEur Phys J A200940325726680671510.1140/epja/i2009-10799-0
– reference: PhillipsPDongZJiGDetection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D–DWT and WTA-KSVM trained by PSOTVACBiomed Signal Process Control201521587310.1016/j.bspc.2015.05.014
– reference: YangJIdentification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machineEntropy2015171066636682
– reference: YangMDual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain DetectionAppl Sci20166610.3390/app6060169
– reference: Doreswamy, Salma MU (2015) BAT-ELM: a bio inspired model for prediction of breast cancer data. In: International Conference on Applied and Theoretical Computing And Communication Technology (Icatcct). Davangere, IEEE, pp. 501–506
– reference: HazlettHCGuHBMunsellBCEarly brain development in infants at high risk for autism spectrum disorderNature2017542764134810.1038/nature21369
– reference: ChenX-QFractal dimension estimation for developing pathological brain detection system based on Minkowski-Bouligand methodIEEE Access201645937594710.1109/ACCESS.2016.2611530
– reference: Chen Y (2016) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping: A class-imbalanced susceptibility-weighted imaging data study. Multimed Tools Appl. doi:10.1007/s11042-017-4383-9 (Online)
– reference: PhillipsPDongZYangJPathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimizationProg Electromagn Res2015152415810.2528/PIER15040602
– reference: RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015
– reference: ZhouX-XComparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machineSimulation201692986187110.1177/0037549716629227
– reference: Huo Y, Carass A, Resnick SM et al (2016) Combining Multi-atlas Segmentation with Brain Surface Estimation. In: Conference on Medical Imaging - Image Processing. San Diego, Spie-Int Soc Optical Engineering, p 97840E
– reference: HuoYKAsmanAJPlassardAJSimultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusionHum Brain Mapp201738259961610.1002/hbm.23432
– reference: HuoYPlassardAJCarassAConsistent cortical reconstruction and multi-atlas brain segmentationNeuroImage201613819721010.1016/j.neuroimage.2016.05.030
– reference: Chen H (2017) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl. doi:10.1007/s11042-017-4554-8 (Online)
– reference: LuZA Pathological Brain Detection System Based on Radial Basis Function Neural NetworkJournal of Medical Imaging and Health Informatics2016651218122210.1166/jmihi.2016.1901
– reference: SunPPathological brain detection based on wavelet entropy and Hu moment invariantsBiomed Mater Eng201526s112831290
– reference: MavaddatySAhadiSMSeyedinSSpeech enhancement using sparse dictionary learning in wavelet packet transform domainComputer Speech And Language201744224710.1016/j.csl.2017.01.009
– reference: SunYA Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier EntropyJ Med Syst201640710.1007/s10916-016-0525-2
– reference: LiuGPathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machineSpringerPlus20154110.1186/s40064-015-1523-4
– reference: OyedotunOKhashmanAIris nevus diagnosis: convolutional neural network and deep belief networkTurk J Electr Eng Comput Sci20172521106111510.3906/elk-1507-190
– reference: MustafaNMemonRALiJPA Classification Model for Imbalanced Medical Data based on PCA and Farther Distance based Synthetic Minority Oversampling TechniqueInt J Adv Comput Sci Appl2017816167
– reference: ZhanTPathological brain detection by artificial intelligence in magnetic resonance imaging scanningProg Electromagn Res201615610513310.2528/PIER16070801
– reference: YangJPreclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)Entropy20151741795181310.3390/e17041734
– reference: YadavBChSMathurSEstimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approachJ Hydrol201654337338510.1016/j.jhydrol.2016.10.013
– reference: WangMLiHCuiJTPINOCCHIO: Probabilistic Influence-Based Location Selection over Moving ObjectsIEEE Trans Knowl Data Eng201628113068308210.1109/TKDE.2016.2580138
– reference: ChenKLvQLuYRobust regularized extreme learning machine for regression using iteratively reweighted least squaresNeurocomputing201723034535810.1016/j.neucom.2016.12.029
– reference: NayakDRDetection of unilateral hearing loss by Stationary Wavelet EntropyCNS Neurol Disord Drug Targets201716212212810.2174/1871527315666161024142036
– reference: LiHBhowmickSSSunAXConformity-aware influence maximization in online social networksVLDB J201524111714110.1007/s00778-014-0366-x
– reference: Ying ZB, Li H, Ma JF et al (2016) Adaptively secure ciphertext-policy attribute-based encryption with dynamic policy updating. Science China-Information Sciences 59(4):16, 042701
– reference: RongYMZhangGJChangYIntegrated optimization model of laser brazing by extreme learning machine and genetic algorithmInt J Adv Manuf Technol2016879–122943295010.1007/s00170-016-8649-6
– reference: Jiang Y, Zhu W (2017) Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed Tools Appl. doi:10.1007/s11042-017-4703-0 (Online)
– reference: DasSChowdhuryMKunduMKBrain MR image classification using multiscale geometric analysis of RippletProgress in Electromagnetics Research-Pier201313711710.2528/PIER13010105
– reference: ZhouXXZhangGSDetection of abnormal MR brains based on wavelet entropy and feature selectionIEEJ Trans Electr Electron Eng201611336437310.1002/tee.22226
– reference: ChenPDuSPathological Brain Detection via Wavelet Packet Tsallis Entropy and Real-Coded Biogeography-based OptimizationFundamenta Informaticae20171511–42752913629903
– volume: 40
  issue: 7
  year: 2016
  ident: 5023_CR25
  publication-title: J Med Syst
– volume: 8
  start-page: 61
  issue: 1
  year: 2017
  ident: 5023_CR17
  publication-title: Int J Adv Comput Sci Appl
– volume: 4
  start-page: 5937
  year: 2016
  ident: 5023_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2611530
– ident: 5023_CR10
  doi: 10.1117/12.2216604
– volume: 6
  issue: 6
  year: 2016
  ident: 5023_CR32
  publication-title: Appl Sci
– volume: 6
  start-page: 1218
  issue: 5
  year: 2016
  ident: 5023_CR15
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2016.1901
– ident: 5023_CR33
  doi: 10.1007/s11432-015-5428-1
– volume: 156
  start-page: 105
  year: 2016
  ident: 5023_CR36
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER16070801
– ident: 5023_CR34
– ident: 5023_CR7
  doi: 10.1109/ICATCCT.2015.7456936
– volume: 4
  issue: 1
  year: 2015
  ident: 5023_CR14
  publication-title: SpringerPlus
– volume: 151
  start-page: 275
  issue: 1–4
  year: 2017
  ident: 5023_CR4
  publication-title: Fundamenta Informaticae
– volume: 543
  start-page: 373
  year: 2016
  ident: 5023_CR29
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.10.013
– volume: 17
  start-page: 1795
  issue: 4
  year: 2015
  ident: 5023_CR30
  publication-title: Entropy
  doi: 10.3390/e17041734
– volume: 28
  start-page: 3068
  issue: 11
  year: 2016
  ident: 5023_CR28
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2580138
– ident: 5023_CR27
  doi: 10.1007/s11042-016-4242-0
– volume: 26
  start-page: 1283
  issue: s1
  year: 2015
  ident: 5023_CR24
  publication-title: Biomed Mater Eng
– volume: 38
  start-page: 599
  issue: 2
  year: 2017
  ident: 5023_CR11
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23432
– volume: 137
  start-page: 1
  year: 2013
  ident: 5023_CR6
  publication-title: Progress in Electromagnetics Research-Pier
  doi: 10.2528/PIER13010105
– ident: 5023_CR12
  doi: 10.1007/s11042-017-4703-0
– volume: 72
  start-page: 344
  year: 2017
  ident: 5023_CR35
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.048
– volume: 44
  start-page: 22
  year: 2017
  ident: 5023_CR16
  publication-title: Computer Speech And Language
  doi: 10.1016/j.csl.2017.01.009
– volume: 25
  start-page: 1106
  issue: 2
  year: 2017
  ident: 5023_CR19
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1507-190
– volume: 230
  start-page: 345
  year: 2017
  ident: 5023_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.029
– volume: 17
  start-page: 6663
  issue: 10
  year: 2015
  ident: 5023_CR31
  publication-title: Entropy
  doi: 10.3390/e17107101
– volume: 542
  start-page: 348
  issue: 7641
  year: 2017
  ident: 5023_CR8
  publication-title: Nature
  doi: 10.1038/nature21369
– volume: 24
  start-page: 117
  issue: 1
  year: 2015
  ident: 5023_CR13
  publication-title: VLDB J
  doi: 10.1007/s00778-014-0366-x
– volume: 11
  start-page: 364
  issue: 3
  year: 2016
  ident: 5023_CR38
  publication-title: IEEJ Trans Electr Electron Eng
  doi: 10.1002/tee.22226
– volume: 152
  start-page: 41
  year: 2015
  ident: 5023_CR21
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER15040602
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 5023_CR22
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– ident: 5023_CR1
  doi: 10.1007/s11042-017-4383-9
– volume: 87
  start-page: 2943
  issue: 9–12
  year: 2016
  ident: 5023_CR23
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8649-6
– volume: 40
  start-page: 257
  issue: 3
  year: 2009
  ident: 5023_CR26
  publication-title: Eur Phys J A
  doi: 10.1140/epja/i2009-10799-0
– volume: 16
  start-page: 122
  issue: 2
  year: 2017
  ident: 5023_CR18
  publication-title: CNS Neurol Disord Drug Targets
  doi: 10.2174/1871527315666161024142036
– volume: 138
  start-page: 197
  year: 2016
  ident: 5023_CR9
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.05.030
– volume: 92
  start-page: 861
  issue: 9
  year: 2016
  ident: 5023_CR37
  publication-title: Simulation
  doi: 10.1177/0037549716666962
– ident: 5023_CR3
  doi: 10.1007/s11042-017-4554-8
– volume: 21
  start-page: 58
  year: 2015
  ident: 5023_CR20
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.05.014
SSID ssj0016524
Score 2.4824831
Snippet Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22629
SubjectTerms Algorithms
Brain
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Genetic algorithms
Image detection
Machine learning
Medical imaging
Multimedia Information Systems
Neural networks
Oversampling
Particle swarm optimization
Special Purpose and Application-Based Systems
Wavelet analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxwxDLXocmkP0FJQFyjKoSdgpGQyGTIn1CIQQipCBSRuo3wuldhZ2l0Oe-C_Y89mdgEJzpnxIXbs59jxA_iRq1gFW2CaGkSVFbaKGcYZKrhyxHLKO2UoUfx9Xp5eF2c36iZduI1TW2XnE1tH7UeO7sgxSddlheao8sP7fxmxRlF1NVFofIBldMFa9WD51_H5xZ95HaFUidZW8wxjo-jqmu3jOUFPU8hLKwxcGX8ZmRZw81WFtA08J59hJSFG9nOm4i-wFJo1WO3YGFg6nGvw6dlowa_weDlEo2BEONy5N2aJDoL5MGnbrxpmp2w8bRABomQ2_NuMiMiOUU_n2FCjeTNg8xGv-wy9ON0lssQzMWDDtg8TV0zj2ZmZGmbuBiTjdrgO1yfHV0enWaJayJzU-SSzUpgD60QRlfDcIGyJ3AmEhjyP0iEqqZwpnbE-6CIEq52PFvNq7kWshDGV3IBeM2rCN2BWVTFK7aSxonC5te4gSllKq32gWfx94N021y7NISc6jLt6MUGZNFOjZmrSTM37sDv_5X42hOO9j7c73dXpPI7rhfX0Ya_T52L5TWGb7wvbgo8IoPSs52wbepP_D-E7gpSJ3UmW-AT4muVE
  priority: 102
  providerName: ProQuest
Title Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm
URI https://link.springer.com/article/10.1007/s11042-017-5023-0
https://www.proquest.com/docview/2086973052
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDExApjuM2GQvqQ0VUCKhUpsh27ILUpoiWoQP_nXOatIAAiSmDnRty9t13uccHcOpxE2rpY5iqaej4MjQO-hmbcHURy_FYcWEDxZterdP3uwM-yPq4p3m1e56STC31qtmN2lYSa1U5OhoH4_Qix9Dd1vH1vcYydVDjGZNt4DroDmmeyvxJxFdntEKY35Kiqa9p7cBWBhJJY6HVXVjTSQm2cwIGkt3HEmx-mia4B-_3YzwHxHIM5xaNSMsAQWI9SyuuEiLnZDpPEPShZDJ-TiaWu47YMs6psLXlyZAsp7peEDTc9vchyaglhmScll7iikhi0hVzQcRoaGU8jfeh32o-XHWcjF3BUSzwZo5kVNSlor7hNHYFIhXjKopo0PUMUwhEQiVqSshYB77WMlCxkRhKuzE1IRUiZAdQSCaJPgQieWgMCxQTkvrKk1LVDWM1JoNY2_H7ZXDzzxypbPS4ZcAYRauhyVYzEWomspqJ3DKcLV95Wczd-GtzJdddlF3BaeRhsBai_eJeGc5zfa6WfxV29K_dx7CBECpYVJ1VoDB7fdMnCFNmsgrrQatdhWKj_XjdxOdls3d7V00P6weqg-RV
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QE4FCggAgXmABfA0q7tde1DhXi0Sl8RglbqzewzVGqcQoKqHPhL_EZmHG8CSPTWs-09eGbn-2Zndj6A56kKlTc5paleVkluqpAQznDBVRCXU84qzYni0aDon-T7p-p0BX7FuzDcVhljYhuo3djyGTkl6WVRkTuq9M3Ft4RVo7i6GiU05m5x4GeXlLJNtvc-kH1fpOnuzvH7ftKpCiQ2K9NpYjKpt4yVeVDSCU0IHYSVxIJEGjJLAFxZXVhtnC9z701pXTCUQgonQyW15uFLFPLXiGZUtIvW3u0MPn5a1C0K1cnoliIhLJaxjtpe1pN8FYZRQRFQJuJvJFzS238qsi3Q7d6B9Y6h4tu5S92FFd9swO2o_oBdMNiAW3-MMrwHPz-PyAmRBY5jOEXD8hPo_LRt92rQzHAya4hx0so4OmvGLJyH3EM60dzY3gxxMVL2NRJq8NkldroWQxy1fZ_0RDcO9_VMoz4f8hpfR_fh5FqM8ABWm3HjHwIaVYWQlTbTRuY2NcZuhSwrMlM6z7P_eyDib65tN_ec5TfO6-XEZrZMTZap2TK16MHLxScX86EfV728GW1Xd_t_Ui-9tQevoj2Xj_-72KOrF3sGN_rHR4f14d7g4DHcJPJWzvvdNmF1-v2Hf0IEaWqedl6J8OW6N8JvHyUjyA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqYTgwKOASCngA1yAFfbueus9IAS0UR8QVUCl3hY_Q6VmU0gQyoE_xq9jZmMngERvPds7h_3G8_CM5wN4nMtQe1NimupFnZWmDhn6GSq4cozlpLNSU6L4fljtHZcHJ_JkDX6ltzDUVplsYmeo3cTSHTkm6aqqUR1l_iLEtoijncGr868ZMUhRpTXRaSxU5NDPf2D6Nn25v4NYP8nzwe6nt3tZZBjIbKHyWWYKobeNFWWQwnGN3jpwKzAi4nkoLDrj2urKauO8Kr03yrpgMJ3kToRaaE2DmND8r-P-SvVg_c3u8OjDsoZRyUipq3iGflmkmmr3cE_QsxjyEBKdZsb_9oqrUPef6mzn9AY34XqMVtnrhXrdgjXfbsCNxATBomHYgGt_jDW8DT8_jlEhGZEdJ9PKDFFRMOdnXetXy8ycTectRp8omY1P2wmR6DHqJ51qanJvR2w5XvY5QxjoHpNFjosRG3c9oLiiW8cO9FwzfTYiGV_Gd-D4UkC4C7120vp7wIysQyiULbQRpc2NsduhKKrCKOeJB6APPP3mxsYZ6ETFcdaspjcTMg0i0xAyDe_D0-Un54sBIBdt3krYNdEWTJuV5vbhWcJztfxfYZsXC3sEV_AANO_2h4f34SrGcWrR-rYFvdm37_4Bxkoz8zAqJYPPl30OfgNldif0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+pathological+brain+detection+by+synthetic+minority+oversampling+technique%2C+extreme+learning+machine%2C+and+Jaya+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhang%2C+Yu-Dong&rft.au=Zhao%2C+Guihu&rft.au=Sun%2C+Junding&rft.au=Wu%2C+Xiaosheng&rft.date=2018-09-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=17&rft.spage=22629&rft.epage=22648&rft_id=info:doi/10.1007%2Fs11042-017-5023-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_017_5023_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon