Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm

Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extrem...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 77; no. 17; pp. 22629 - 22648
Main Authors Zhang, Yu-Dong, Zhao, Guihu, Sun, Junding, Wu, Xiaosheng, Wang, Zhi-Heng, Liu, Hong-Min, Govindaraj, Vishnu Varthanan, Zhan, Tianmin, Li, Jianwu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extreme learning machine, and Jaya algorithm. The 10 repetitions of K-fold cross validation showed our method achieved perfect classification on two small datasets, and achieved a sensitivity of 99.64 ± 0.52%, a specificity of 99.14 ± 1.93%, and an accuracy of 99.57 ± 0.57% over a 255-image dataset. Our method performs better than six state-of-the-art approaches. Besides, Jaya algorithm performs better than genetic algorithm, particle swarm optimization, and bat algorithm as ELM training method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-017-5023-0