Distribution and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in sediments of different tropical water ecosystems in Niger Delta, Nigeria

Sediments are considered as suitable matrices to study the contamination levels of aquatic environment since they represent a sink for multiple contaminant sources. In this study, the influence of sediment characteristics on the distribution of polycyclic aromatic hydrocarbons (PAHs) and its potenti...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental earth sciences Vol. 77; no. 5; pp. 1 - 14
Main Authors Inam, Edu, Etuk, Inemesid, Offiong, Nnanake-Abasi, Kim, Kyoung-Woong, Kang, Seo-Young, Essien, Joseph
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sediments are considered as suitable matrices to study the contamination levels of aquatic environment since they represent a sink for multiple contaminant sources. In this study, the influence of sediment characteristics on the distribution of polycyclic aromatic hydrocarbons (PAHs) and its potential risk in euryhaline, freshwater and humic aquatic bodies of Douglas/Stubbs creek, Ikpa River and Eniong River, respectively, were investigated. The level of PAHs in sediment was quantified using GC–MS, while sediment properties including total organic carbon (TOC) content and grain size were determined by the wet oxidation and hydrometer methods, respectively. The results revealed that the total levels of PAHs in sediment varied significantly between the euryhaline, freshwater and humic freshwater ecosystems. In Ikpa River freshwater ecosystem, a total PAHs load of 1055.2 ng/g was recorded with the suites concentration ranging from 13.0 ng/g (for acenaphthylene) to 161 ng/g (for pyrene). The humic ecosystem of Eniong River had a total PAH load of 11.06 ng/g, while the suites level recorded ranged from 0.04 ng/g for acenaphthene to 2.65 ng/g for chrysene. The total level of PAHs detected in the euryhaline Douglas/Stubbs creek was 14.47 ng/g, and suite concentrations varied between 4.27 ng/g for naphthalene and 5.13 ng/g for acenaphthylene. This shows variation in quantity and quality of PAH contaminants with the nature of ecosystems. It implies complex and diverse contamination sources as well as different capabilities to recover from PAH contamination. Correlation analysis has shown that sediment particle and TOC content influenced PAHs burden in bottom sediments, but the effects varied with the molecular weight of PAHs and the nature of the ecosystems. The TOC was the most significant determinant of PAHs load and distribution in sediment of the freshwater Ikpa River and euryhaline Douglas/Stubbs but had little or no influence in the humic sediment of Eniong River, while the influence of particle size was generally indefinite but slightly associated with PAHs accumulation in the euryhaline sediment. Generally, the total PAH levels (11.0–1055.2 ng/g) recorded were low and below the allowable limit for aquatic sediments. The ecological risk assessment revealed that these levels were lower than the effects range low and effects range medium values. This indicates no acute adverse biological effect although the accumulation of PAHs in freshwater ecosystem of Ikpa River may pose ecological risks as most of the carcinogenic PAH suites had relatively high pollution indices compared to other ecosystem types studied.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-018-7396-4