Defective neuromuscular synaptogenesis in mice expressing constitutively active ErbB2 in skeletal muscle fibers
We overexpressed a constitutively active form of the neuregulin receptor ErbB2 (CAErbB2) in skeletal muscle fibers in vivo and in vitro by tetracycline-inducible expression. Surprisingly, CAErbB2 expression during embryonic development was lethal and impaired synaptogenesis yielding a phenotype with...
Saved in:
Published in | Molecular and cellular neuroscience Vol. 31; no. 2; pp. 334 - 345 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We overexpressed a constitutively active form of the neuregulin receptor ErbB2 (CAErbB2) in skeletal muscle fibers in vivo and in vitro by tetracycline-inducible expression. Surprisingly, CAErbB2 expression during embryonic development was lethal and impaired synaptogenesis yielding a phenotype with loss of synaptic contacts, extensive axonal sprouting, and diffuse distribution of acetylcholine receptor (AChR) transcripts, reminiscent of agrin-deficient mice. CAErbB2 expression in cultured myotubes inhibited the formation and maintenance of agrin-induced AChR clusters, suggesting a muscle- and not a nerve-origin for the defect in CAErbB2-expressing mice. Levels of tyrosine phosphorylated MuSK, the signaling component of the agrin receptor, were similar, while tyrosine phosphorylation of AChRβ subunits was dramatically reduced in CAErbB2-expressing embryos relative to controls. Thus, a gain-of-function manipulation of ErbB2 signaling pathways renders an agrin-deficient-like phenotype that uncouples MuSK and AChR tyrosine phosphorylation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1044-7431 1095-9327 |
DOI: | 10.1016/j.mcn.2005.10.004 |