Resistance in series model for micellar enhanced ultrafiltration of eosin dye
A study has been performed to quantify the extent of flux decline during micellar enhanced ultrafiltration (MEUF) of an acid dye (eosin red) using hexadecyl (cetyl) pyridinium chloride as the cationic surfactant. Effects of the operating conditions, e.g., transmembrane pressure drop and feed-surfact...
Saved in:
Published in | Journal of colloid and interface science Vol. 270; no. 2; pp. 496 - 506 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
15.02.2004
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A study has been performed to quantify the extent of flux decline during micellar enhanced ultrafiltration (MEUF) of an acid dye (eosin red) using hexadecyl (cetyl) pyridinium chloride as the cationic surfactant. Effects of the operating conditions, e.g., transmembrane pressure drop and feed-surfactant-to-dye ratio, on the permeate flux profile and observed retention have been investigated in an unstirred batch ultrafiltration (UF) cell. A simple resistance-in-series model has been used to quantify the flux decline. From the flux decline history, it has been found that the membrane permeability decreases rapidly due to reversible pore blocking and further flux decline is caused by the growth of a gel-type layer over the membrane surface. The different resistances and growth kinetics of the gel layer have been investigated as functions of the operating conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2003.10.030 |