Field-effect transistors made from solution-grown two-dimensional tellurene

The reliable production of two-dimensional (2D) crystals is essential for the development of new technologies based on 2D materials. However, current synthesis methods suffer from a variety of drawbacks, including limitations in crystal size and stability. Here, we report the fabrication of large-ar...

Full description

Saved in:
Bibliographic Details
Published inNature electronics Vol. 1; no. 4; pp. 228 - 236
Main Authors Wang, Yixiu, Qiu, Gang, Wang, Ruoxing, Huang, Shouyuan, Wang, Qingxiao, Liu, Yuanyue, Du, Yuchen, Goddard, William A, Kim, Moon J, Xu, Xianfan, Ye, Peide D, Wu, Wenzhuo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The reliable production of two-dimensional (2D) crystals is essential for the development of new technologies based on 2D materials. However, current synthesis methods suffer from a variety of drawbacks, including limitations in crystal size and stability. Here, we report the fabrication of large-area, high-quality 2D tellurium (tellurene) using a substrate-free solution process. Our approach can create crystals with process-tunable thickness, from a monolayer to tens of nanometres, and with lateral sizes of up to 100 µm. The chiral-chain van der Waals structure of tellurene gives rise to strong in-plane anisotropic properties and large thickness-dependent shifts in Raman vibrational modes, which is not observed in other 2D layered materials. We also fabricate tellurene field-effect transistors, which exhibit air-stable performance at room temperature for over two months, on/off ratios on the order of 106, and field-effect mobilities of about 700 cm2 V−1 s−1. Furthermore, by scaling down the channel length and integrating with high-k dielectrics, transistors with a significant on-state current density of 1 A mm−1 are demonstrated.A substrate-free solution process can create large-area two-dimensional tellurium crystals, which can be used to build field-effect transistors that exhibit air-stable performance at room temperature for over two months and high on-state current densities of 1 A mm–1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2520-1131
DOI:10.1038/s41928-018-0058-4