Fundamental formalism of statistical mechanics and thermodynamics of negative kinetic energy systems
Abstract The solutions of a particle’s Dirac equation contains a negative kinetic energy (NKE) branch. Such an energy spectrum has an upper limit but no lower limit, so that the system with this spectrum, called NKE system, is of negative temperature. Fundamental formulas of statistical mechanics an...
Saved in:
Published in | Journal of physics communications Vol. 5; no. 5; pp. 55012 - 55023 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
The solutions of a particle’s Dirac equation contains a negative kinetic energy (NKE) branch. Such an energy spectrum has an upper limit but no lower limit, so that the system with this spectrum, called NKE system, is of negative temperature. Fundamental formulas of statistical mechanics and thermodynamics of NKE systems are presented. All the formulas have the same forms of those of positive kinetic energy (PKE) systems. Almost all thermodynamic quantities, except entropy and specific heat, have a contrary sign compared to those of PKE systems. Specially, pressure is negative and its microscopic mechanism is given. Entropy is always positive and Boltzmann entropy formula remains valid. The three laws of thermodynamics remain valid, as long as the thermodynamic quantities have a negative sign. Negative temperature Carnot engine can work between two negative temperatures. Since the NKE levels need not be fully filled, it is argued that the concept of Dirac’s Fermion Sea can be totally abandoned. |
---|---|
Bibliography: | JPCO-101857.R1 |
ISSN: | 2399-6528 2399-6528 |
DOI: | 10.1088/2399-6528/abfe71 |