A double-inverted pendulum model for studying the adaptability of postural control to frequency during human stepping in place

In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment an...

Full description

Saved in:
Bibliographic Details
Published inBiological cybernetics Vol. 79; no. 4; pp. 337 - 345
Main Authors Breniere, Y, Ribreau, C
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.10.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment and the two-legged system. The principal goal of this work is to propose an equivalent model which makes use of the usual anthropometric data for the human body, in order to study the ability of postural control to adapt to the step frequency in this particular paradigm of human gait. This model allows the computation of CM-to-CP amplitude ratios, when the center of foot pressure (CP) oscillates, as a parametric function of the stepping in place frequency, whose parameters are gravity and major body characteristics. Motion analysis from a force plate was used to test the model by comparing experimental and simulated values of variations of the CM-to-CP amplitude ratio in the frontal plane versus the frequency. With data from the literature, the model is used to calculate the intersegmental torque which stabilizes the HAT when the Leg segment is subjected to a harmonic torque with an imposed frequency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0340-1200
1432-0770
DOI:10.1007/s004220050483