Large-scale Vacuum Vessel Design and Finite Element Analysis

The vacuum plume effects experimental system (PES) is the first experimental system designed to study the effects of vacuum plume in China. The main equipment, a vacuum chamber of 5.5 m in diameter and 12.8 m in length, and structure design of hinged door are described. The finite element method (FE...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of aeronautics Vol. 25; no. 2; pp. 189 - 197
Main Authors WANG, Wenlong, CAI, Guobiao, ZHOU, Jianping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The vacuum plume effects experimental system (PES) is the first experimental system designed to study the effects of vacuum plume in China. The main equipment, a vacuum chamber of 5.5 m in diameter and 12.8 m in length, and structure design of hinged door are described. The finite element method (FEM) is adopted to analyze the static strength and stability of the PES vacuum chamber. It is demonstrated that the static strength and stability are qualified. For the 5.5 m diameter vacuum chamber door, three design schemes are put forward. After comparisons are made, the single-axis-double-pin hinged door is selected. The FEM is applied to checking its static strength as well as distortions. The results show that the door’s distortion and displacement change mainly due to the gravity of the door which leads to its sinking. The calculated displacement is less than 7.8 mm, while the actual measurement is 5 mm. The single-axis-double-pin hinged door mechanism completely satisfies the design requirements. This innovative structure can be introduced as a reference for the design of large-scale hinged doors.
Bibliography:The vacuum plume effects experimental system (PES) is the first experimental system designed to study the effects of vacuum plume in China. The main equipment, a vacuum chamber of 5.5 m in diameter and 12.8 m in length, and structure design of hinged door are described. The finite element method (FEM) is adopted to analyze the static strength and stability of the PES vacuum chamber. It is demonstrated that the static strength and stability are qualified. For the 5.5 m diameter vacuum chamber door, three design schemes are put forward. After comparisons are made, the single-axis-double-pin hinged door is selected. The FEM is applied to checking its static strength as well as distortions. The results show that the door’s distortion and displacement change mainly due to the gravity of the door which leads to its sinking. The calculated displacement is less than 7.8 mm, while the actual measurement is 5 mm. The single-axis-double-pin hinged door mechanism completely satisfies the design requirements. This innovative structure can be introduced as a reference for the design of large-scale hinged doors.
WANG Wenlong, CAI Guobiao*, ZHOU Jianping School of Astronautics, Beihang University, Beijing 100191, China
vacuum; design; finite element method; buckling; chamber; hinges
11-1732/V
ISSN:1000-9361
DOI:10.1016/S1000-9361(11)60378-6