Carbon based manganese oxide (MnO2, MnO2/MWCNT and MnO2/rGO) composite electrodes for high-stability Li-ion batteries

Synthesis of extremely competent materials is of great interest in addressing the energy storage concerns. Manganese oxide nanowires (MnO 2 NWs) are prepared in situ with multiwall carbon nanotubes (MWCNT) and graphene oxide (GO) using a simple and effective hydrothermal method. Powder XRD, Raman an...

Full description

Saved in:
Bibliographic Details
Published inCarbon Letters Vol. 34; no. 1; pp. 215 - 225
Main Authors Rosaiah, Pitcheri, Divya, Ponnusamy, Sambasivam, Sangaraju, Tighezza, Ammar M., Kalaivani, V., Muthukrishnaraj, A., Ayyar, Manikandan, Niyitanga, Theophile, Kim, Haekyoung
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2024
한국탄소학회
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthesis of extremely competent materials is of great interest in addressing the energy storage concerns. Manganese oxide nanowires (MnO 2 NWs) are prepared in situ with multiwall carbon nanotubes (MWCNT) and graphene oxide (GO) using a simple and effective hydrothermal method. Powder XRD, Raman and XPS analysis are utilized to examine the structural characteristics and chemical state of composites. The initial specific discharge capacity of pure MnO 2 NWs , MnO 2 NWs/MWCNT and MnO 2 NWs/rGO composites are 1225, 1589 and 1685 mAh/g, respectively. The MnO 2 NWs/MWCNT and MnO 2 NWs/rGO composites showed stable behavior with a specific capacity of 957 and 1108 mAh/g, respectively, after 60 cycles. Moreover, MnO 2 NWs/rGO composite sustained a specific capacity of 784 mAh/g, even after 250 cycles at a current density of 1 A/g showing outstanding cycling stability. Graphical abstract
ISSN:1976-4251
2233-4998
DOI:10.1007/s42823-023-00604-1