A combinatorial approach to the exponents of Moore spaces
In this article, we give a combinatorial approach to the exponents of Moore spaces. Our result states that the projection of the p r + 1 -power map of the loop space of the ( 2 n + 1 ) -dimensional mod p r Moore space to its atomic piece containing the bottom cell T 2 n + 1 { p r } is null homotopic...
Saved in:
Published in | Mathematische Zeitschrift Vol. 290; no. 1-2; pp. 289 - 305 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we give a combinatorial approach to the exponents of Moore spaces. Our result states that the projection of the
p
r
+
1
-power map of the loop space of the
(
2
n
+
1
)
-dimensional mod
p
r
Moore space to its atomic piece containing the bottom cell
T
2
n
+
1
{
p
r
}
is null homotopic for
n
>
1
,
p
>
3
and
r
>
1
. This result strengthens the classical result that
Ω
T
2
n
+
1
{
p
r
}
has an exponent
p
r
+
1
. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-017-2018-5 |