A combinatorial approach to the exponents of Moore spaces

In this article, we give a combinatorial approach to the exponents of Moore spaces. Our result states that the projection of the p r + 1 -power map of the loop space of the ( 2 n + 1 ) -dimensional mod p r Moore space to its atomic piece containing the bottom cell T 2 n + 1 { p r } is null homotopic...

Full description

Saved in:
Bibliographic Details
Published inMathematische Zeitschrift Vol. 290; no. 1-2; pp. 289 - 305
Main Authors Cohen, Frederick R., Mikhailov, Roman, Wu, Jie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we give a combinatorial approach to the exponents of Moore spaces. Our result states that the projection of the p r + 1 -power map of the loop space of the ( 2 n + 1 ) -dimensional mod p r Moore space to its atomic piece containing the bottom cell T 2 n + 1 { p r } is null homotopic for n > 1 , p > 3 and r > 1 . This result strengthens the classical result that Ω T 2 n + 1 { p r } has an exponent p r + 1 .
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-017-2018-5