Effect of self-field on the current distribution in Roebel-assembled coated conductor cables
Roebel cables are a promising solution for high current, low AC loss cables made of high-temperature superconductors in the form of coated conductors. High current creates significant self-field, which influences the superconductor's current-carrying capability. In this paper, we investigate th...
Saved in:
Published in | Superconductor science & technology Vol. 24; no. 9; pp. 95002 - 1-8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
Institute of Physics
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Roebel cables are a promising solution for high current, low AC loss cables made of high-temperature superconductors in the form of coated conductors. High current creates significant self-field, which influences the superconductor's current-carrying capability. In this paper, we investigate the influence of the self-field on the cable's critical current and the current repartition among the different strands. In order to investigate the cable's critical current, we analysed the influence of flux creep on the cable properties. Using the experimental material's properties derived from measurements on a single conductor as input for our calculations, we were able to predict the critical current of the cable in two limiting situations: good current sharing and complete electrical insulation among the strands. The results of our calculations show good agreement with the measured critical current of three Roebel cable samples. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0953-2048 1361-6668 |
DOI: | 10.1088/0953-2048/24/9/095002 |