Effects of Flow Oscillations in the Mainstream on Film Cooling

The objective of this study is to investigate the effects of oscillations in the main flow and the coolant jets on film cooling at various frequencies (0 to 2144 Hz) at low and high average blowing ratios. Numerical simulations are performed using LES Smagorinsky–Lilly turbulence model for calculati...

Full description

Saved in:
Bibliographic Details
Published inInventions (Basel) Vol. 3; no. 4; p. 73
Main Authors Baek, Seung, Yavuzkurt, Savas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this study is to investigate the effects of oscillations in the main flow and the coolant jets on film cooling at various frequencies (0 to 2144 Hz) at low and high average blowing ratios. Numerical simulations are performed using LES Smagorinsky–Lilly turbulence model for calculation of the adiabatic film cooling effectiveness and using the DES Realizable k-epsilon turbulence model for obtaining the Stanton number ratios (St/Sto). Additionally, multi-frequency inlet velocities are applied to the main and coolant flows to explore the effects of multi-frequency unsteady flows and the results are compared to those at single frequencies. The results show that at a low average blowing ratio (M = 0.5) if the oscillation frequency is increased from 0 to 180 Hz, the effectiveness decreases and the Stanton number ratio increases. However, when the frequency goes from 180 to 268 Hz, the effectiveness sharply increases and the Stanton number ratio increases slightly. If the frequency changes from 268 to 1072 Hz, the film cooling effectiveness decreases and the Stanton number ratio increases slightly. If the frequency goes from 1072 to 2144 Hz, the film cooling effectiveness climbs up and the Stanton number ratio decreases. The results show that at high average blowing ratio (M = 1.0) the trends of the film cooling effectiveness are similar to those at low blowing ratio (M = 0.5) except from 0 to 90 Hz. If the frequency goes from 0 to 90 Hz at M = 1.0, the film cooling effectiveness increases and the Stanton number ratio decreases. It can be said that it is important to include the effects of oscillating flows when designing film cooling systems for a gas turbine.
AbstractList The objective of this study is to investigate the effects of oscillations in the main flow and the coolant jets on film cooling at various frequencies (0 to 2144 Hz) at low and high average blowing ratios. Numerical simulations are performed using LES Smagorinsky–Lilly turbulence model for calculation of the adiabatic film cooling effectiveness and using the DES Realizable k-epsilon turbulence model for obtaining the Stanton number ratios (St/Sto). Additionally, multi-frequency inlet velocities are applied to the main and coolant flows to explore the effects of multi-frequency unsteady flows and the results are compared to those at single frequencies. The results show that at a low average blowing ratio (M = 0.5) if the oscillation frequency is increased from 0 to 180 Hz, the effectiveness decreases and the Stanton number ratio increases. However, when the frequency goes from 180 to 268 Hz, the effectiveness sharply increases and the Stanton number ratio increases slightly. If the frequency changes from 268 to 1072 Hz, the film cooling effectiveness decreases and the Stanton number ratio increases slightly. If the frequency goes from 1072 to 2144 Hz, the film cooling effectiveness climbs up and the Stanton number ratio decreases. The results show that at high average blowing ratio (M = 1.0) the trends of the film cooling effectiveness are similar to those at low blowing ratio (M = 0.5) except from 0 to 90 Hz. If the frequency goes from 0 to 90 Hz at M = 1.0, the film cooling effectiveness increases and the Stanton number ratio decreases. It can be said that it is important to include the effects of oscillating flows when designing film cooling systems for a gas turbine.
The objective of this study is to investigate the effects of oscillations in the main flow and the coolant jets on film cooling at various frequencies (0 to 2144 Hz) at low and high average blowing ratios. Numerical simulations are performed using LES Smagorinsky⁻Lilly turbulence model for calculation of the adiabatic film cooling effectiveness and using the DES Realizable k-epsilon turbulence model for obtaining the Stanton number ratios (St/Sto). Additionally, multi-frequency inlet velocities are applied to the main and coolant flows to explore the effects of multi-frequency unsteady flows and the results are compared to those at single frequencies. The results show that at a low average blowing ratio (M = 0.5) if the oscillation frequency is increased from 0 to 180 Hz, the effectiveness decreases and the Stanton number ratio increases. However, when the frequency goes from 180 to 268 Hz, the effectiveness sharply increases and the Stanton number ratio increases slightly. If the frequency changes from 268 to 1072 Hz, the film cooling effectiveness decreases and the Stanton number ratio increases slightly. If the frequency goes from 1072 to 2144 Hz, the film cooling effectiveness climbs up and the Stanton number ratio decreases. The results show that at high average blowing ratio (M = 1.0) the trends of the film cooling effectiveness are similar to those at low blowing ratio (M = 0.5) except from 0 to 90 Hz. If the frequency goes from 0 to 90 Hz at M = 1.0, the film cooling effectiveness increases and the Stanton number ratio decreases. It can be said that it is important to include the effects of oscillating flows when designing film cooling systems for a gas turbine.
Author Baek, Seung
Yavuzkurt, Savas
Author_xml – sequence: 1
  givenname: Seung
  surname: Baek
  fullname: Baek, Seung
– sequence: 2
  givenname: Savas
  surname: Yavuzkurt
  fullname: Yavuzkurt, Savas
BookMark eNplkE1LRSEQhiUK-vwB7YTWt0ZHj7oJ4tKtoGhTa_GYlpdztfRU9O87dSOCVjMML88zvLtkM5ccCDlkcIxo4CTlt5DHVHJDEAAKN8gOF4zNJEOx-WffJgetLQGAaYnSmB1yeh5j8GOjJdLFUN7pbfNpGNw3jaZMx6dAb1zKbazBrWjJdJGGFZ2XMqT8uE-2ohtaOPiZe-R-cX43v5xd315czc-uZx41H2cC0CBn4F0vZWAKuYAInZMcmWFRuE7JaB600yIo0BB4rw1Do3qOvOsD7pGrNfehuKV9rmnl6octLtnvQ6mP1tUx-SFY1knGpFCTTAkTvO67iF45mCRaeDGxjtas51peXkMb7bK81jy9b7nUXBlQDKcUW6d8La3VEH-tDOxX6_Zf6_gJZ8B2Mg
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_124755
crossref_primary_10_3390_en14227659
crossref_primary_10_1080_10407782_2023_2255932
crossref_primary_10_3390_en15238876
crossref_primary_10_3390_app11041537
crossref_primary_10_3390_pr9020198
crossref_primary_10_1063_5_0171129
crossref_primary_10_3390_en14082063
crossref_primary_10_3390_en15072643
Cites_doi 10.4236/epe.2013.54B025
10.1115/1.2437231
10.1016/0045-7930(94)00032-T
10.1016/S0997-7546(00)00129-1
10.1115/1.4007614
10.1299/jtst.8.488
10.1115/1.4007667
10.1115/1.4003589
10.1115/1.4004883
10.1115/1.2841349
10.1017/S0022112080001577
10.1016/S0142-727X(03)00081-X
10.1115/1.2185122
10.1115/1.1339002
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1115/1.4004212
10.1016/j.ijheatfluidflow.2007.05.001
10.1115/1.4003653
10.1260/1756-8277.4.4.275
10.1115/1.2812334
10.2514/1.18034
10.1016/S0017-9310(98)00042-8
ContentType Journal Article
Copyright 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/inventions3040073
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2411-5134
ExternalDocumentID oai_doaj_org_article_165115470ca749ec8b6f3c7a0a6784c4
10_3390_inventions3040073
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
MODMG
M~E
OK1
P62
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-40393210cab55e173240f06a523191f4a675f9d8a84e7080e2b891397b2326be3
IEDL.DBID DOA
ISSN 2411-5134
IngestDate Thu Jul 04 20:57:18 EDT 2024
Thu Oct 10 16:55:41 EDT 2024
Fri Aug 23 01:11:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-40393210cab55e173240f06a523191f4a675f9d8a84e7080e2b891397b2326be3
OpenAccessLink https://doaj.org/article/165115470ca749ec8b6f3c7a0a6784c4
PQID 2582790713
PQPubID 2055401
ParticipantIDs doaj_primary_oai_doaj_org_article_165115470ca749ec8b6f3c7a0a6784c4
proquest_journals_2582790713
crossref_primary_10_3390_inventions3040073
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Inventions (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
Lefebvre (ref47) 1998
ref30
ref33
Tannehill (ref40) 1997
ref32
ref2
ref1
ref17
ref16
ref19
ref18
White (ref37) 1999
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref41
ref22
ref44
Han (ref11) 2013
ref21
ref43
ref28
ref27
ref29
ref7
Cengel (ref38) 2014
Giampaolo (ref5) 2006
Cebeci (ref39) 2005
ref4
ref3
Bogard (ref8) 2006
ref6
Kays (ref9) 2005
Lieuwen (ref10) 2003
Rao (ref42) 2010
References_xml – ident: ref3
  doi: 10.4236/epe.2013.54B025
– ident: ref1
– ident: ref22
  doi: 10.1115/1.2437231
– ident: ref41
  doi: 10.1016/0045-7930(94)00032-T
– ident: ref15
  doi: 10.1016/S0997-7546(00)00129-1
– year: 2006
  ident: ref5
  contributor:
    fullname: Giampaolo
– ident: ref20
  doi: 10.1115/1.4007614
– ident: ref45
– ident: ref24
– ident: ref36
  doi: 10.1299/jtst.8.488
– start-page: 285
  year: 2010
  ident: ref42
  article-title: Modeling of Turbulent Flows and Boundary Layer
  contributor:
    fullname: Rao
– ident: ref21
  doi: 10.1115/1.4007667
– ident: ref29
  doi: 10.1115/1.4003589
– ident: ref19
– ident: ref32
– year: 2005
  ident: ref39
  contributor:
    fullname: Cebeci
– year: 2013
  ident: ref11
  contributor:
    fullname: Han
– year: 2014
  ident: ref38
  contributor:
    fullname: Cengel
– ident: ref12
  doi: 10.1115/1.4004883
– ident: ref27
  doi: 10.1115/1.2841349
– ident: ref34
– year: 1999
  ident: ref37
  contributor:
    fullname: White
– ident: ref46
  doi: 10.1017/S0022112080001577
– ident: ref13
– ident: ref2
– ident: ref16
  doi: 10.1016/S0142-727X(03)00081-X
– ident: ref6
– year: 2006
  ident: ref8
  article-title: Airfoil Film Cooling
  contributor:
    fullname: Bogard
– year: 2003
  ident: ref10
  contributor:
    fullname: Lieuwen
– ident: ref23
  doi: 10.1115/1.2185122
– ident: ref44
  doi: 10.1115/1.1339002
– ident: ref28
– ident: ref43
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– year: 1998
  ident: ref47
  contributor:
    fullname: Lefebvre
– year: 2005
  ident: ref9
  contributor:
    fullname: Kays
– ident: ref18
  doi: 10.1115/1.4004212
– ident: ref26
– ident: ref30
  doi: 10.1016/j.ijheatfluidflow.2007.05.001
– ident: ref25
  doi: 10.1115/1.4003653
– ident: ref17
  doi: 10.1260/1756-8277.4.4.275
– ident: ref14
  doi: 10.1115/1.2812334
– ident: ref4
  doi: 10.2514/1.18034
– ident: ref7
  doi: 10.1016/S0017-9310(98)00042-8
– year: 1997
  ident: ref40
  contributor:
    fullname: Tannehill
– ident: ref35
– ident: ref33
– ident: ref31
SSID ssj0001853599
Score 2.175548
Snippet The objective of this study is to investigate the effects of oscillations in the main flow and the coolant jets on film cooling at various frequencies (0 to...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 73
SubjectTerms Acoustics
Blowing
Coolants
Cooling systems
Film cooling
film cooling effectiveness
Flow velocity
Gas turbines
Gases
Heat transfer
K-epsilon turbulence model
Mathematical models
numerical simulation
Oscillating flow
Oscillations
Stanton number
Stanton number ratio
Turbines
Turbulence models
turbulent flows
Unsteady flow
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS8MwEA66vfgiiorTKXnwSShb27RJXhQ3NoawKeJgbyVpkzHY2rlO_PvetZkiA1_bQsPdJfd9d5c7Qu6MZlL4cRc2UoQEJQw8GRjtaa59LqyOA4sXnMeTeDRlz7No5gJupSur3J2J1UGdFSnGyDtBJAIukVM9rj88nBqF2VU3QuOQNAOfYZq22RtMXt9-oyzgjSIp63RmCPy-s9jVcpch2i8P_zikqm__3rFc-ZrhCTl2IJE-1Vo9JQcmPyMPdaPhkhaWDpfFF30B77V0pWx0kVOAcnQMRB-vf6gVLXI6XCxXtF_gXJ75OZkOB-_9keemH3hpKIItyk3iBZtU6SgyPsfOebYbK2COwLEsUwD1rcyEEsxwwH0m0JhylFwDSIq1CS9IIy9yc0loZvxYacUBCzEWaaWtAKVYk1nNUt1lLXK_E0GyrptcJEAOUF7JnrxapIdC-vkQ-1NXD4rNPHHmnvhxhH1-OKyeM2lSoWMbplx1YdWCpfDH9k7Eids0ZfKr4qv_X1-TI8Atoq4qaZPGdvNpbgAbbPWtM4BvyMO5NQ
  priority: 102
  providerName: ProQuest
Title Effects of Flow Oscillations in the Mainstream on Film Cooling
URI https://www.proquest.com/docview/2582790713
https://doaj.org/article/165115470ca749ec8b6f3c7a0a6784c4
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L15EUXE6Rw6ehLH-SJrkIrixOoRNEQe7lbwukcHWipv47_vSdDLZwYvXUmj7vSTv-5qX7xFyY4ApGSYBTiTuBEocdVRkoAMCQiEtJJF1B5xH42Q4YY9TPt1q9eVqwrw9sAeuGybcOcaIINeCKZNLSGycCx1oXGZZ7p1AQ74lpqq_K5iFuFJ-GzNGXd-db2q4V7EbtyL-lYgqv_6d5bjKMekxOarJIb33L3VC9kxxSu68wfCKlpami_KLPmHWWtQlbHReUKRwdIQC3x370EtaFjSdL5a0X7p-PG9nZJIOXvvDTt31oJPHMlo7vJQ7WJNr4NyEwjnm2SDRqBhRW1mG382tmkktmRHI90wEbqtRCUBylICJz0mjKAtzQejMhIkGLZADMcZBg5UYDGtmFlgOAWuS2w0E2bs3t8hQFDi8sh28mqTnQPq50flSVxcwWlkdreyvaDVJawNxVk-WVRZxGQnl5PLlfzzjihwiq5G-5qRFGuuPT3ONzGENbbIv04c2OegNxs8v7WrIfAOYT8Ip
link.rule.ids 315,786,790,870,2115,12792,21416,27955,27956,33406,33777,43633,43838,74390,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF58HPQiioqPqnvwJASb7GYfF0XFWLWtFwu9hd10txRqoqbi33cmSS1S8JoEsszM7nzfzouQc2e5VqFow0aKkaCwKNCRs4GVNpTKWxF5LHDu9UVnwJ-G8bC5cCubtMr5mVgd1KMiwzvyyyhWkdTIqa7fPwKcGoXR1WaExipZ50wwtHOVPCzuWMAXxVrXwUwG7P5yMs_kLhlar2R_3FHVtX_pUK48TbJNthqISG9qne6QFZfvkqu6zXBJC0-TafFNX8B3TZtENjrJKQA52gOaj8Uf5o0WOU0m0zd6V-BUnvEeGST3r3edoJl9EGRMRTOUmsbymszYOHahxL55vi0M8EZgWJ4bAPpej5RR3ElAfS6yGHDU0gJEEtaxfbKWF7k7IHTkQmGskYCEOI-tsV6BSrwbecsz2-aH5GIugvS9bnGRAjVAeaVL8joktyik3w-xO3X1oPgcp42xp6GIscuPhNVLrl2mrPAsk6YNq1Y8gz-25iJOmy1TpgsFH_3_-oxsdF573bT72H8-JpuAYFSdX9Iia7PPL3cCKGFmTytT-AFvgbq8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-QLyIomJ95uBJWLqP7Ca5KL7W-qh6sNDbkmyTUmh3q634953ZzSpS8LpZSJiZzHyTeRFyajSTIkh8uEgxOihR6MnQaE9zHXBhdRJaLHDuPiedHnvox32X_zRzaZWNTqwU9aDM8Y28HcYi5BJ9qrZ1aRGvN-nF9N3DCVIYaXXjNJbJKoJsHOMg0rvf9xawS7GUdWAzgvX2qMnqnkUoyTz6Y5qqDv4LCrqyOukm2XBwkV7W_N0iS6bYJud1y-EZLS1Nx-UXfQE7NnZJbXRUUAB1tAsuPxaCqAktC5qOxhN6XeKEnuEO6aW3b9cdz81B8PJIhHOkoMRSm1zpODYBxx561k8U-JDgbVmmAPRbORBKMMMBAZpQY_BRcg1wKdEm2iUrRVmYPUIHJkiUVhxQEWOxVtoKYI81A6tZrn3WImcNCbJp3e4iAzcB6ZUt0KtFrpBIPz9ip-rqQ_kxzJzgZ0ESY8cfDqfnTJpc6MRGOVc-nFqwHHY8bEicueszy36Zvf__8glZAynInu6fHw_IOoAZUaeaHJKV-cenOQLAMNfHlSR8A_pSvvE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Flow+Oscillations+in+the+Mainstream+on+Film+Cooling&rft.jtitle=Inventions+%28Basel%29&rft.au=Baek%2C+Seung&rft.au=Yavuzkurt%2C+Savas&rft.date=2018-12-01&rft.issn=2411-5134&rft.eissn=2411-5134&rft.volume=3&rft.issue=4&rft.spage=73&rft_id=info:doi/10.3390%2Finventions3040073&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_inventions3040073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-5134&client=summon