Ultra-Sensitive Refractive Index Sensing Based on Quasi-BICs in All-Dielectric Nanorod Array
We propose an all-dielectric nanorod array for ultra-sensitive refractive index sensing based on quasi-bound states in the continuum (BICs). The nanorod is fabricated by silicon or silicon with an air hole, i.e., the hollow silicon nanorod. The quasi-BICs are formed in the hollow silicon nanorod arr...
Saved in:
Published in | Photonics Vol. 11; no. 6; p. 503 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose an all-dielectric nanorod array for ultra-sensitive refractive index sensing based on quasi-bound states in the continuum (BICs). The nanorod is fabricated by silicon or silicon with an air hole, i.e., the hollow silicon nanorod. The quasi-BICs are formed in the hollow silicon nanorod array due to the symmetry-breaking of air holes. The high-quality factor (Q-factor) and ultra-narrow reflectance spectral width at quasi-BICs contribute to high performances of the sensor. The numerical results show that the sensitivity and figure of merit (FOM) can reach up to 602.9 nm/RIU and 34,977, respectively. The results indicate that the proposed nanostructures of quasi-BICs are promising for advanced biosensing applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics11060503 |