Effects of extremely low frequency electromagnetic fields on turkeys

Abstract Several studies have examined the potential biological effects of electromagnetic fields (EMF) on birds; however, little attention has been paid to the extremely low frequency (ELF; 0-300 Hz; 0-50 μT) radiation found in an urbanized environment. For monitoring the effects of ELF EMF, we use...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 97; no. 2; pp. 634 - 642
Main Authors Laszlo, Anna M, Ladanyi, Marta, Boda, Krisztina, Csicsman, Jozsef, Bari, Ferenc, Serester, Andrea, Molnar, Zsolt, Sepp, Krisztian, Galfi, Marta, Radacs, Marianna
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.02.2018
Subjects
Online AccessGet full text
ISSN0032-5791
1525-3171
1525-3171
DOI10.3382/ps/pex304

Cover

More Information
Summary:Abstract Several studies have examined the potential biological effects of electromagnetic fields (EMF) on birds; however, little attention has been paid to the extremely low frequency (ELF; 0-300 Hz; 0-50 μT) radiation found in an urbanized environment. For monitoring the effects of ELF EMF, we used a turkey (Meleagris gallopavo) model, because the nucleated erythrocytes of turkeys contain β-adrenoceptors, and norepinephrine- (NE-) activated β-adrenoceptors have an important role in physiological and behavioral processes. Our aims were the following: 1) to investigate the intracellular mechanisms; 2) to compare the intracellular mechanisms in the treated and control groups over time, considering inter-individual differences and intra-subject correlations; 3) and to study the reversible nature of the response. The turkeys in the treatment group were treated in vivo with ELF EMF (50 Hz; 10 μT) for 3 wk after a 1-wk-long adaptation period. The animals were not exposed to ELF EMF during the regeneration period (5 wk following the exposure). The NE-activated β-adrenoceptor function was detected by measuring the amount of 3΄5΄-cyclic-adenosine-monophosphate (cAMP), and the biochemical enzyme parameters were defined. Repeated measurements of cAMP levels were analyzed using marginal models and a piecewise linear mixed model to compare treatment and control groups over time. According to our results, NE-activated β-adrenoceptor function was decreased in the treated birds in a time-dependent manner, while there were no differences between toxicological parameters in the serum, compared to the normal ranges. The decreased NE-dependent β-adrenoceptor function could be compensated by the homeostatic complex during the 5-wk regeneration period. Extended experimental periods and more sophisticated analysis methods may help prevent harmful environmental effects on birds; furthermore, these findings could affect public health and the economy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.3382/ps/pex304