Human Daily Activity Recognition With Sparse Representation Using Wearable Sensors
Human daily activity recognition using mobile personal sensing technology plays a central role in the field of pervasive healthcare. One major challenge lies in the inherent complexity of human body movements and the variety of styles when people perform a certain activity. To tackle this problem, i...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 17; no. 3; pp. 553 - 560 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human daily activity recognition using mobile personal sensing technology plays a central role in the field of pervasive healthcare. One major challenge lies in the inherent complexity of human body movements and the variety of styles when people perform a certain activity. To tackle this problem, in this paper, we present a novel human activity recognition framework based on recently developed compressed sensing and sparse representation theory using wearable inertial sensors. Our approach represents human activity signals as a sparse linear combination of activity signals from all activity classes in the training set. The class membership of the activity signal is determined by solving a l 1 minimization problem. We experimentally validate the effectiveness of our sparse representation-based approach by recognizing nine most common human daily activities performed by 14 subjects. Our approach achieves a maximum recognition rate of 96.1%, which beats conventional methods based on nearest neighbor, naive Bayes, and support vector machine by as much as 6.7%. Furthermore, we demonstrate that by using random projection, the task of looking for "optimal features" to achieve the best activity recognition performance is less important within our framework. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-2194 2168-2208 2168-2208 |
DOI: | 10.1109/JBHI.2013.2253613 |