A Randomized Phase II Trial of Granulocyte-Macrophage Colony-Stimulating Factor Therapy in Severe Sepsis with Respiratory Dysfunction
Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates hemopoiesis and effector functions of granulocytes and macrophages and is involved in pulmonary surfactant homeostasis. We investigated whether GM-CSF therapy improved clinically diagnosed severe sepsis and respiratory dysfunction...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 166; no. 2; pp. 138 - 143 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Am Thoracic Soc
15.07.2002
American Lung Association |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates hemopoiesis and effector functions of granulocytes and macrophages and is involved in pulmonary surfactant homeostasis. We investigated whether GM-CSF therapy improved clinically diagnosed severe sepsis and respiratory dysfunction in critically ill patients. This randomized, double-blind, placebo-controlled phase II study added low-dose (3 mcg/kg) intravenous recombinant human GM-CSF daily for 5 days to conventional therapy in 10 patients, with a further eight patients receiving placebo. GM-CSF-treated patients showed improvement in Pa(O(2))/FI(O(2)) over 5 days (p = 0.02) and increased peripheral blood neutrophils (p = 0.08), whereas alveolar neutrophils decreased (p = 0.02). GM-CSF therapy was not associated with decreased 30-day survival or with increased acute respiratory distress syndrome or extrapulmonary organ dysfunction. GM-CSF therapy was associated with increased blood granulocyte superoxide production and restoration or preservation of blood and alveolar leukocyte phagocytic function. We conclude that low-dose GM-CSF was associated with improved gas exchange without pulmonary neutrophil infiltration, despite functional activation of both circulating neutrophils and pulmonary phagocytes. In addition, GM-CSF therapy was not associated with worsened acute respiratory distress syndrome or the multiple organ dysfunction syndrome, suggesting a homeostatic role for GM-CSF in sepsis-related pulmonary dysfunction. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 ObjectType-News-3 content type line 23 |
ISSN: | 1073-449X 1535-4970 |
DOI: | 10.1164/rccm.2009005 |